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Due Today. From page 14, Misc. exercises: 1, 2,
3, 4.

Last meeting. We discussed most of An Innocent
Investigation. We discovered some axioms for num-
ber theory. For that discussion, we took ‘number’
to mean positive integer. One of the axioms said
that 1 was not the successor of any number, that is,
there does not exist a number k such that 1 = k+1.

For the next axiom, we could take any of three
logically equivalent statements. The first said that
there is no infinite decreasing sequence of numbers,
the second was the principle of mathematical in-
duction (if a property of numbers holds for n = 1,
and if it holds for any number n it also holds for
n + 1, then it holds for all numbers), and the third
was the principle of minimization (if a property of
numbers holds for a least one number, then it holds
for a smallest number).

There’s still more axioms that we’ll have to find.
We assumed in our discussion that we knew all
about addition, but more axioms are required to
justify that knowledge.

Today. What are numbers? We’ll discuss the
nature of numbers.

The term natural numbers refers to positive in-
tegers, and the set of natural numbers is usually
denoted N.

Just what are natural numbers? By this question
I mean what kind of mathematical object is N, not
what kind physical thing, since numbers certainly
are matter or energy.

Richard Dedekind (1831–1916) published in 1888
a paper entitled Was sind und was sollen die
Zahlen? variously translated as What are numbers

and what should they be? or The Nature of Mean-
ing of Numbers. We’ll look at his answer to this
question.

Dedekind defined the set of natural numbers N
in terms of chains. We can illustrate the intent of
his definitions with a diagram.

q1 - q2 - q3 - q4 - q5 . . .

Associated with each number is a successor, and
that’s indicated by an arrow from the number to
its successor. Although this diagram stops with 5,
it should go on forever.

Dedekind realized that the names of the numbers
aren’t relevant to defining them, so let’s do as he
did and use arbitrary symbols. He also used a prime
to indicate the successor of a number, so if n is the
number, then n′ is its successor. Our diagram now
looks like this.

qa - qa′
- qa′′

- qa′′′
- qa′′′′

. . .

We have the beginnings of a definition for the set
of numbers. It is a set N equipped with a function

N
′
→ N which sends an element n to an element n′,

called the successor of n. Whenever we have that
situation, we can illustrate it with a diagram with
arrows as above.

Now, there are lots of things of this sort that
aren’t at all like the set of numbers. Here’s an ex-
ample of a set with a successor function that doesn’t
look right.
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The problem is that two different elements have
the same successor. So, we’ll add the condition
that two different elements can’t have the same
successor. In other words, the function N

′
→ N

is required to be a one-to-one function. (There are
other names for one-to-one functions. Sometimes
they’re called injective functions; sometimes monic
functions.) With this requirement, no two arrows
in the diagram can end at the same point.

That requirement helps, but it’s not enough.
There has to be a starting point, that is, some el-
ement in the set that’s not the successor of any
element. That’s easy to do. Just make that a
requirement—there exists an element, called the
initial element, that is not the successor of any el-
ement. We’ll denote that initial element 1.

That’s still not enough. We need to make sure
that every element in the set can be reached from 1.
Dedekind’s solution was to add one more require-
ment, and that is that the only subset of N con-
taining 1 that is closed under the successor function
is all of N. That means that if S is a subset of N,
and the initial element is in S, and whenever n ∈ S
then n′ ∈ S, then S is all of N.

That does it. We can summarize all that as a
definition.

Definition. (Dedekind) A set N is said to be sim-
ply infinite when there exists a one-to-one function

N
′
→ N called the successor function, such that

there is an element, called the initial element and
denoted 1, that is not the successor of any element,
and if a subset S of N contains 1 and is closed under
the successor function, then S = N.

Such a simply infinite set N is characterized by

an element 1 and a transformation N
′
→ N satisfy-

ing the following conditions:

(1). ∀n, m, n 6= m implies n′ 6= m′.

(2). ∀n, 1 6= n′.

(3). If S ⊆ N, 1 ∈ S, and (∀n, n ∈ S
implies n′ ∈ S), then ∀n, n ∈ S.

The Dedekind/Peano axioms are this last charac-
terization involving 1, the successor function, and
the three conditions.

Dedekind then shows, given any simply infinite
set N, how to define the usual arithmetic opera-
tions, how to prove they all have the expected prop-
erties, and most important, that any two simply in-
finite sets are the same in the following sense. If N1

and N2 are two simply infinite sets, then there is a

unique function N1
f→ N2 such that f(1) = 1 and

∀n ∈ N1, f(n′) = (f(n))′. Furthermore, this f is a
one-to-one correspondence, that is, has an inverse
function. That means the structures of N1 and N2

are identical; only the names of their elements are
different.

That’s enough justification to conclude that any
simply infinite set may be taken to be the natural
numbers N.
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