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Due Wednesday. From page 26, exercises 2, 3, 4,
5, 6, 11, 12, 13.

For next time. Finish reading section 2.1 and
begin section 2.2.

Last meeting. We discussed Dedekind’s concept
of numbers. Dedekind realized that the names of
the numbers aren’t relevant to defining them, and
came up with the following axioms to define a sim-
ply infinite set, which was his definition for a set N
of natural numbers.

Definition. (Dedekind) A set N is said to be sim-
ply infinite when there exists a one-to-one function

N
′
→ N called the successor function, such that

there is an element, called the initial element and
denoted 1, that is not the successor of any element,
and if a subset S of N contains 1 and is closed under
the successor function, then S = N.

Such a simply infinite set N is characterized by

an element 1 and a transformation N
′
→ N satisfy-

ing the following conditions:

1. ∀n, m, n 6= m implies n′ 6= m′.

2. ∀n, 1 6= n′.

3. If S ⊆ N, 1 ∈ S, and (∀n, n ∈ S implies n′ ∈
S), then S = N.

The Dedekind/Peano axioms are this last charac-
terization involving 1, the successor function, and
the three conditions.

Today. Some elementary properties of divisibility,
greatest common divisors, and the Euclidean algo-
rithm.

We’ll restrict our discussion of numbers today to
N, the natural numbers, that is, the set of positive
integers.

Recall that an integer m divides an integer n,
written m|n, if there exists an integer k such that
mk = n. A few basic properties of divisibility follow
directly from this definition. Euclid uses some of
these in Book VII of his Elements.

1. 1 divides every number. 1|n.

2. Each number divides itself. n|n.

3. If one number m divides another number n,
then m divides any multiple of n. m|n implies
m|kn.

4. Divisibility is a transitive relation, that is, m|n
and n|k imply m|k.

5. If one number divides two other numbers, then
it divides both their sum and difference. m|n
and m|k imply m|(n + k) and m|(n− k).

6. Cancellation law. One number divides another
if and only if any multiple of that one number
divides the same multiple of the other number.
m|n ⇐⇒ kn|kn.

The divisors of a number can be displayed graphi-
cally in what is called a Hasse diagram of the lattice
of divisors. We’ll look at a few of those in class.

More on prime numbers. We know that there
are infinitely many primes, and that every number
is a product of primes. Now let’s prove those state-
ments. We’ll start by proving something that will
help us prove these two statements. If a theorem is
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not particularly interesting, but is useful in prov-
ing an interesting statement, then it’s often called
a lemma. This one is found in Euclid’s Elements.

Lemma. Every number greater than 1 has at least
one prime divisor.

Proof: Let n be an integer greater than 1. We’ll find
a prime divisor of n. Let m be the smallest divisor
of n greater than 1. (Note that we’re using the
minimization principle, also called the well-ordering
principle, to conclude that such an m exists.) We’ll
show that m is prime thereby proving the lemma.
We’ll do that with a proof by contradiction, and
that means that first we’ll suppose that m is not
prime, then derive a contradiction, and that will
imply that m must be prime.

Suppose m is not prime, but composite. Them m
is the product of two integers, j and k, each greater
than 1. Now, k|m and m|n, so k|n. But k < m.
That gives us a divisor of n which is even smaller
than m but still greater than 1. That contradicts
the fact that m is the smallest divisor of n greater
than 1. Thus, m is prime, and it’s a divisor of n.
q.e.d

Now we can prove one of the two statements.

Theorem. Every number greater than 1 is either a
prime or the product of primes.

Proof: This will be another proof by contradition
that uses the well-ordering principle.

Suppose that the theorem is false. Then there is
some composite number greater than 1 that that is
not the product of primes. Let N be the smallest
such. By our lemma, this N has some prime divisor,
call it p. Then n = N/p is a number smaller than
N but larger than 1, so, by the minimality of N ,
n is either prime or the product of primes. In the
first case, when n is prime, then N = pn is the
product of two primes. In the second case when
n is a product of primes, then N = pn is also a
product of primes. In any case, N is the product of
primes, a contradiction. Thus, the theorem is true.
q.e.d

Next, let’s prove the other statement, that there
are infinitely many primes. This is Euclid’s proof.

Theorem. There are infinitely many primes.

Proof: Again, this is a proof by contradiction.
Suppose that there are only finitely many primes,

namely, p1, p2, . . . , pk. Let n be one more than the
product of these primes,

n = p1p2 · · · pk + 1.

By our lemma n has a prime factor, call it p.
Since p1, p2, . . . , pk are all the primes, therefore p
must be one of them. Being one of them p di-
vides their product p1p2 · · · pk. But p also divides
n = p1p2 · · · pk + 1. Therefore, p divides the differ-
ence 1. But the prime p can’t divide 1 since p > 1.
From that contradiction, we conclude that there are
infinitely many primes. q.e.d

The Euclidean algorithm. Last time we out-
lined the Euclidean algorithm, an algorithm to
compute the greatest common divisor of two num-
bers m and n.

Euclid defined the greatest common divisor of two
numbers m and n, often denoted GCD(m, n) or
more simply just (m, n), is defined as the largest
number d which is at the same time a divisor of m
and a divisor of n.

There are two forms of the Euclidean algorithm.
The first form, as Euclid stated it, repeatedly sub-
tracts the smaller number from the larger replacing
the larger by the difference, until the two numbers
are reduced to the same number, and that’s the
greatest common divisor. (Note that the process
has to stop by the well-ordering principle since at
each step the larger number is reduced.)

The other form speeds up the process. Repeat-
edly divide the smaller number into the larger re-
placing the larger by the remainder. (This speeds
up the process because if the smaller number is
much smaller than the larger, you don’t have to
subtract it from the larger many times, just divide
once and take the remainder which is the same as
what you’d get if repeatedly subtracted it.)

We saw that this Euclidean algorithm works to
produce the GCD, and the argument only depended
on the principle mentioned above that if one num-
ber divides two other numbers, then it divides both
their sum and difference.
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Sometimes the GCD of two numbers turns out
to be 1, and in that case we say the two numbers
are relatively prime.

We can get more out of the Euclidean algorithm
than just the GCD of two numbers, and we’ll see
what that is next time.
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