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Due Today. From page 26, exercises 2, 3, 4, 5, 6,
11, 12, 13.

Due Monday. From page 32, exercises 5, 7, 12,
13, 15.

For next time. Read through section 2.3.

Last meeting. More on divisibility,greatest com-
mon divisors, and the Euclidean algorithm.

Today. The unique factorization theorem, a.k.a.,
the fundamental theorem of arithmetic, says that
each number can only be factored as a product of
primes in one way. For instance, 275 is the product
5 · 5 · 11, and, excepting the order of the factors,
that’s the only way that 275 can be written as the
product of primes.

Now, in order to make this general statement
valid we have to extend a little bit what we mean
by a product. For example, how do you write a
prime number like 7 as a product of primes? It has
to be written as the product 7 of only one prime.
So we will have to accept a single number as being
a product of one factor.

Even worse, what about 1? There are no primes
that divide 1. One solution is to accept a product
of no factors as being equal to 1. It’s actually a
reasonable solution to define the empty product to
be 1, but until we find another need for an empty
product, let’s wait on that and restrict this unique
factorization theorem to numbers greater than 1.
So, here’s the statement of the theorem we want
to prove. (I’m calling it theorem 5, because we’ll
reduce it one step at a time to more “primitive”
theorems).

Theorem 5. Each integer n greater than 1 can be

uniquely factored as a product of primes. That is,
if n equals the product p1p2 · · · pr of r primes, and
it also equals the product q1q2 · · · qs of s primes,
then the number of factors in the two products is
the same, that is r = s, and the two lists of primes
p1, p2, . . . , pr and q1, q2, . . . , qs are the same apart
from the order the listings.

Rather than exactly following the form of the
proof in the text that uses a proof by contradiction,
we’ll make it into a direct proof by using a form of
induction. The form that we’ll use is this:

In order to prove a statement S(n) is true
for all numbers, prove that S(n) follows
from the assumption that S(k) is true for
all k < n.

This principle of induction appears to be stronger
than the one we’ve used before, but, in fact, it is
equivalent to it. It’s really the same as the mini-
mization principle (i.e. well-ordering principle) ap-
plied to the negation of the statement. The advan-
tage in using it is that a proof by contradiction is
not needed making the proof more understandable.

We’ll prove the unique factorization theorem in
two cases. Case 1 will be where n is a prime number
itself. Case 2 will be where n is composite.

Case 1: Suppose that n is a prime number. The
only way that a prime number can be written as
a product of primes is as itself; otherwise it would
not be prime, but composite.

Case 2: Suppose that n is a composite number
equal to both products of primes p1p2 · · · pr and
q1q2 · · · qs. Note that since n is composite, both
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r and s are at least 2; otherwise it would not be
composite, but prime.

Now look at one of the primes, say p1. It divides
n, so it divides the product of the other primes
q1q2 · · · qs. We suspect that that implies it has to
be one of those other primes. Let’s put that off for
a bit; that is, logically before we prove this theo-
rem 4, we need to prove another theorem, theorem
4, that if a prime divides a product of primes, then
it is one of those primes; but we’ll actually do that
next. Assuming we’ve done that, then we can con-
clude that p1 is one of the qi’s. We can reorder the
product q1q2 · · · qs to make it q1 so that p1 equals
q1. Now, since p1p2 · · · pr = q1q2 · · · qs and the first
first factors of the two products are equal, there-
fore p2 · · · pr = q2 · · · qs. Now, by our new induc-
tion principle, these are two prime factorizations of
a number smaller than n, and hence are the same,
except for their order. Therefore, they have the
same number of factors, that is, r = s, and all the
factors are the same except for their order. And the
number n is that product times p1, which equals q1,
therefore the original two products, p1p2 · · · pr and
q1q2 · · · qs, are the same except for order. q.e.d.

Well, that finished the proof except we have to
prove another theorem first, namely, theorem 4.

Theorem 4. If a prime divides a product of
primes q1q2 . . . qs, then it equals one of the primes
q1, q2, . . . , qs.

We could do that, but we we’ll prove a slightly
stronger theorem, theorem 3.

Theorem 3. If a prime divides a product of num-
bers b1b2 . . . bs, then it divides one of the numbers
b1, b2, . . . , bs.

Now the reason theorem 3 implies theorem 4
is because if a prime p divides a product of
primes q1q2 . . . qs, then it divides one of the primes
q1, q2, . . . , qs, but the only way that one prime can
divide another is if it equals the other.

Now we’re down to proving theorem 3. A prod-
uct of s numbers b1b2 . . . bs is actually a series of
binary products. It’s b1 times b2 . . . bs, and b2 . . . bs

is b2 times b3 · · · bs, etc, where the last product is
bs−1bs is the product of bs−1 times bs. That means

that if we knew theorem 2, then, using ordinary
induction, we could conclude theorem 3.

Theorem 2. If a prime divides a product of two
numbers, then it divides one of the numbers.

Now, we could prove theorem 2 directly, but it
turns out that there is a slightly stronger version
that we can use in other places, so let’s prove it, the-
orem 1, instead, and show theorem 2 follows from
theorem 1.

Theorem 1. If n and a are relatively prime, and
n|ab, then n|b.
Proof that theorem 1 implies theorem 2: Suppose
that a prime p divides ab. If p doesn’t divide a,
then it’s relatively prime to a, so by theorem 1, it
divides b. Therefore, either p|a or p|b. q.e.d.

Proof of theorem 1: Suppose that (n, a) = 1. Then
1 is a linear combination of n and a, that is, there
exist numbers t and u such that

1 = tn + ua.

Multiply that equation by b to get

b = tnb + uab.

Now, if n|ab, then n divides the right hand side of
the equation, but that equals the left hand side, so
n|b. q.e.d.

Discussion. This presentation is in reverse or-
der of that in the book. Typically in a mathemat-
ics book those theorems that come first logically
are presented first. Here we started with our goal
and discovered the theorems that were needed to
prove the goal. (Actually, I made the list longer
than it needed to be by strengthening a couple of
them because the stronger versions are more useful,
something you can only tell with hindsight.)

The advantage to presenting theorems in their
logical order is that it is easier to follow the logic.
The disadvantage is that the motivation for the pre-
liminary theorems is not apparent until the final
theorem, the interesting one, is reached.

We didn’t follow the text in a couple of other
ways, too. For one, we proved the main theorem,
theorem 5, directly using a form of induction, while
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the text proved it indirectly with a proof by con-
tradiction. Generally, proofs by contradiction are
easier to come up with, but they’re harder to follow.
Another difference is that the text used a different
theorem in place of our theorem 2. The text’s the-
orem is a little stronger than ours. It says that if a
number is relatively prime to two numbers, then it’s
relatively prime to their product. That’s actually a
useful fact, so it should be noted.

Usually when we write the prime factorization
of a number, we used exponents on those primes
that are repeated. For instance, the number 40 had
the prime factorization 2 · 2 · 2 · 5. An abbreviated
form for this factorization is 23 · 5. We say that the
prime 2 occurs with multiplicity 3, while the prime
5 occurs with multiplicity 1. The multiplicities are
the exponents. So, in general, a number n has the
prime factorization

n = pe1
1 pe1

2 · · · pek
k

where the primes p1, p2, . . . , pk are all distinct, and
their multiplicities are the exponents e1, e2, . . . , ek,
respectively.

Immediate corollaries to the unique factor-
ization theorem. A corollary is a theorem that
logically follows very simply from a theorem. Some-
times it follows from part of the proof of a theorem
rather than from the statement of the theorem. In
any case, it should be easy to see why it’s true. We
can draw a couple of corollaries from the unique
factorization theorem.

Corollary. The only primes that can divide a num-
ber n are the ones that appear in its prime factor-
ization pe1

1 pe1
2 · · · pek

k .

Corollary. If the prime factorizations of m and n
are m = pe1

1 pe1
2 · · · pek

k and n = pf1
1 pf1

2 · · · pfk
k (where

here some of the ei’s and fi’s equal 0 so we can
use the same list of primes for both numbers), then
their greatest common divisor d = (m, n) has the
prime factorization d = pg1

1 pg1
2 · · · pgk

k where each
exponent gi is the minimum of the corresponding
exponents ei and fi.

As an example of the last corollary, if m = 180 =
223251 and n = 600 = 233152, then their GCD

equals 223151 = 60.
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