Math 126 Number Theory

Prof. D. Joyce, Clark University

10 Feb 2006

Due Today. From page 43 , exercises $2,3,5,6,7$.
Due Wednesday. From page 47, exercises 3-8, 10, 12.

Due next Friday. From page 54: 1-5, 8, 10; and from page 63: 1, 4-6, 8, 9, 13, 19-21.

First test. Wednesday, Feb. 22.
For next time. We'll begin section 3.3 on linear congruence equations.

Last meeting. Linear Diophantine equations.
Today. Congruence modulo n. When a number n divides the difference $a-b$ of two other numbers a and b, we say that a is congruent to b modulo n, denoted

$$
a \equiv b(\bmod n) .
$$

When n doesn't divide the difference $a-b$, we say a is not congruent to b, denoted $a \not \equiv b(\bmod n)$.

You're familiar with congruence modulo 12; it's what 12-hour clocks use.

We may discuss the "mind reading" game in the text. The trick in that game comes down to a particular equation modulo 1000 , namely

$$
143 \cdot 7 \equiv 1(\bmod 1000) .
$$

Properties of congruence. Congruence modulo n has many of the same properties that equality has. First of all, it's an equivalence relation. An equivalence relation is a relation that is reflexive, symmetric, and transitive.

Reflexive: $\forall a, a \equiv a(\bmod n)$.
Symmetric: $\forall a, \forall b, a \equiv b(\bmod n)$ implies $b \equiv$ $a(\bmod n)$.

Transitive: $\forall a, \forall b, \forall c, a \equiv b(\bmod n)$ and $b \equiv$ $c(\bmod n)$ implies $a \equiv c(\bmod n)$.
We'll prove these properties hold for congruence modulo n as well as some of those mentioned in the next paragraph.

Besides being an equivalence relation, congruence modulo n works well with three of the operations of algebra, namely, addition, subtraction, and multiplication. If $a \equiv b(\bmod n)$ and $c \equiv$ $d(\bmod n)$, then $a+c \equiv b+d(\bmod n), a-c \equiv$ $b-d(\bmod n)$, and $a c \equiv b d(\bmod n)$.

But congruence modulo n doesn't work so well with division. Although $49 \equiv 25(\bmod 6)$ and $7 \equiv 1(\bmod 6)$, it is not the case that $49 / 7 \equiv$ $10 / 1(\bmod 6)$.

