Math 126 Number Theory

Prof. D. Joyce, Clark University

10 Feb 2006

Due Today. From page 43, exercises 2, 3, 5, 6, 7.

Due Wednesday. From page 47, exercises 3–8, 10, 12.

Due next Friday. From page 54: 1–5, 8, 10; and from page 63: 1, 4–6, 8, 9, 13, 19–21.

First test. Wednesday, Feb. 22.

For next time. We'll begin section 3.3 on linear congruence equations.

Last meeting. Linear Diophantine equations.

Today. Congruence modulo n. When a number n divides the difference a - b of two other numbers a and b, we say that a is *congruent* to b modulo n, denoted

 $a \equiv b \pmod{n}$.

When n doesn't divide the difference a - b, we say a is not congruent to b, denoted $a \not\equiv b \pmod{n}$.

You're familiar with congruence modulo 12; it's what 12-hour clocks use.

We may discuss the "mind reading" game in the text. The trick in that game comes down to a particular equation modulo 1000, namely

 $143 \cdot 7 \equiv 1 \pmod{1000}.$

Properties of congruence. Congruence modulo n has many of the same properties that equality has. First of all, it's an equivalence relation. An *equivalence relation* is a relation that is reflexive, symmetric, and transitive.

Reflexive: $\forall a, a \equiv a \pmod{n}$.

Symmetric: $\forall a, \forall b, a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$.

Transitive: $\forall a, \forall b, \forall c, a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$.

We'll prove these properties hold for congruence modulo n as well as some of those mentioned in the next paragraph.

Besides being an equivalence relation, congruence modulo n works well with three of the operations of algebra, namely, addition, subtraction, and multiplication. If $a \equiv b \pmod{n}$ and $c \equiv$ $d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$, $a - c \equiv$ $b - d \pmod{n}$, and $ac \equiv bd \pmod{n}$.

But congruence modulo n doesn't work so well with division. Although $49 \equiv 25 \pmod{6}$ and $7 \equiv 1 \pmod{6}$, it is not the case that $49/7 \equiv 10/1 \pmod{6}$.