Math 126 Number Theory

Prof. D. Joyce, Clark University

10 Feb 2006

Due Wednesday. From page 47, exercises 3-8, 10.

Due Friday. From page 54: 1-5, 8, 10; and from page 63: 1, 4-6, 8, 9, 13, 19-21.

First test. Wednesday, Feb. 22.
For next time. Read through section 3.3.
Last meeting. Introduction to congruence modulo n.

Today. As we've seen, congruence modulo n has a lot of the same properties as equality. Equality has a very strong property of substitution. If $a=b$, then given any algebraic expression $f(a)$ that involves a, if you substitute one or more of the instances of a by b, then the resulting expression $f(b)$ is equal to the original expression $f(a)$. Congruence modulo n doesn't have as strong a property of substitution. But, since congruence modulo n works well with addition, subtraction, and multiplication, if $f(a)$ is any algebraic expression built from addition, subtraction, and multiplication, that is, if $f(a)$ is a polynomial, and one or more of the instances of a in $f(a)$ is replaced by b, then the resulting polynomial $f(b)$ is congruent to $f(a)$ modulo n.

For example, if $f(a)=7 x a^{2}+5 a x y-13$, and $a \equiv b(\bmod n)$, then $f(a) \equiv b(\bmod n)$, that is, $7 x a^{2}+5 a x y-13 \equiv 7 x b^{2}+5 b x y-13(\bmod n)$.

We saw last time that division doesn't always work so well with congruence modulo n, but it does sometimes, and that's when you're dividing by a number relatively prime to n. Here's the theorem.
Theorem. If $(a, n)=1$ and $a b \equiv a c(\bmod n)$, then $b \equiv c(\bmod n)$.

Proof: Since $a b \equiv a c(\bmod n)$, therefore $a b=a c+$ $k n$ for some integer n. Therefore, $a \mid k n$, but $(a, n)=$ 1 , so $a \mid k$. Let $k=a k_{1}$. Now divide the equation $a b=a c+k n$ by a to get $b=c+k_{1} n$. Therefore, $b \equiv c(\bmod n)$.
Q.E.D.

There is a generalization of this theorem, namely, if $(a, n)=d$ and $a b \equiv a c(\bmod n)$, then $b \equiv$ $c(\bmod n / d)$.

Residue systems. It is clear that every integer a is congruent modulo n to one of the integers $0,1,2, \ldots, n-1$. Just take the remainder when you divide a by n. (There's a little more to do if a is negative, but not much.) The set of numbers

$$
\{0,1,2, \ldots, n-1\}
$$

is called a complete system of residues modulo n because every integer is congruent to exactly one of the integers in that set. There are other complete systems of residues modulo n, but this is the one usually taken.

We'll look at addition and multiplication tables modulo n.

