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Due Today. From page 47, exercises 3–8, 10.

Due Friday. From page 54: 1–5, 8, 10; and from
page 63: 1, 4–6, 8, 9, 13, 19–21.

First test. Wednesday, Feb. 22.

For next time. Finish reading through section
3.3.

Last meeting. Congruence modulo n and poly-
nomials.

Today. We define Z/nZ, also denoted Zn, as the
set of residues modulo n and note that it’s a ring
in general, and a field when n is a prime. We’ll
note that some elements of Zn do have square roots,
and some don’t. And we begin the study of linear
congruences.

The natural numbers, the integers, the ra-
tional numbers, the real numbers, and the
complex numbers. There are standard notations
for these various kinds of numbers.

A natural number is a positive integer, although
sometimes it’s more convenient to include 0. The
set of all natural numbers is usually denoted N.
We saw how N can be defined axiomatically us-
ing the Dedekind/Peano axioms. The operations
of addition and multiplication are defined on N,
but subtraction and division are only partially de-
fined operations, since a− b is only defined if a > b,
and a/b is only defined when b|a.

The integers, denoted Z includes the natural
numbers as well as zero and negative integers. The
operations of addition, subtraction, and multipli-
cation are defined on Z, but division is still only a
partial operation.

Any set equipped with the three operations of
addition, subtraction, and multiplication that sat-
isfy certain axioms is called a ring. The axioms are
the statements that the three operations act as you
expect they should. Such axioms require that ad-
dition and multiplication be commutative and as-
sociative, that multiplication distributes over addi-
tion, that 0 acts as a neutral element for addition
and 1 acts as a neutral element for multiplication,
and that negation is inverse to addition. We won’t
dwell on these axioms.

Since Z has these three operations and they have
the usual properties, that makes Z into a ring.
But since subtraction is not defined for all pairs
of natural numbers, N is not a ring. Another ring
we’ve seen is the set of polynomials. Since you can
add, subtract, and multiply polynomials, and those
three operations have the usual properties for poly-
nomials, therefore the set of all polynomials is a
ring.

A rational number is the quotient of two integers
a/b where the denominator is not 0. The set of all
rational numbers is denoted Q. Besides the three
operations of addition, subtraction, and multipli-
cation, Q also has the fourth operation of division
which is a partial operation since division by 0 is
not defined, but that’s the only exception.

Any set with the four operations of addition, sub-
traction, multiplication, and division (where divi-
sion is defined except division by 0) which satisfies
certain axioms, namely the axioms for rings and
one more that says division is inverse to multiplica-
tion, is called a field. The rational numbers Q is a
field. Note that every field is automatically a ring.

There are two other fields we’ll look use. One
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is the field of real numbers R. A real number is
any number including all positive numbers, 0, and
negative. Not just the rational numbers are real,
but so are irrational numbers.

Finally, we’ll have use for the complex numbers
C. A complex number is a number of the form
a+ ib where a and b are real numbers and i2 = −1.
We’ll review complex numbers before we use them.

The integers modulo n. If we think of two in-
tegers a and b as being the same if a ≡ b (mod n),
then there are only n integers modulo n. One way
of doing that is to represent integers modulo n by
a complete residue system, and, as usual, we’ll take
that complete residue system to be the integers
from 0 through n− 1. Thus, we’ll say, for instance,
that 5 plus 3 equals 1 modulo 7, by which we mean
5 + 3 ≡ 1 (mod 7). Thus, we can turn congruence
modulo n, which is an equivalence relation on Z
into equality on an n-element set. That n-element
set is denoted Z/nZ, read Z mod nZ, or more sim-
ply as Zn, read Z sub n. We can take the elements
of Zn to be the integers from 0 through n−1, where
we understand that addition, subtraction, and mul-
tiplication are done modulo n.

Since we have those three operations, Zn is a ring.

Last time we proved the theorem which said that
if (a, n) = 1, then cancellation by a works mod-
ulo n. More precisely, if (a, n) = 1 and ab ≡
ac (mod n), then b ≡ c (mod n). Now if n hap-
pens to be a prime p, then (a, p) = 1 means the
same thing as a 6≡ 0 (mod p). Thus, cancellation
except by 0 works modulo a prime p.

When we looked at the multiplication table mod-
ulo p = 7 last time, we saw that every one of the
7 elements in Z7 occurred exactly once in each row
and column, except the 0 row and 0 column which
were all 0s. That every element c occurs in a row a
means that there is exactly one b such that ab = c.
In other words, c/a = b. Thus, Z7 has an operation
of division that’s inverse to multiplication, so Z7 is
a field. Likewise, Zp will be a field for any prime p.

What we’ve just done is solve the linear congru-
ence

ax ≡ b mod 7

which leads into our next major topic. Before we
go to the linear case, let’s look at a quadratic con-
gruence first.

Squares modulo n. In the multiplication table
modulo 7, if you look down the diagonal, you’re
looking at squares. Thus, modulo 7,

a 0 1 2 3 4 5 6
a2 0 1 4 2 2 4 1

First, what pattern do you see? And why is it
there?

Second, note that some numbers are squares and
some are not. For instance, 3 is not a square mod-
ulo 7. Thus, the quadratic congruence x2 ≡ 3mod 7
has no solution. But some quadratic congruences
have two solutions, such as x2 ≡ 2 mod 7, the solu-
tions being x = ±3, and one, namely x2 ≡ 0 mod 7
has one solution.

The question of what numbers are squares mod-
ulo n is one that’s well studied. One that is a
square is called a quadratic residue. Unfortunately,
we won’t have time in this course to study the the-
ory of quadratic residues.

Linear congruences. The easiest sort of con-
gruence equation to solve is a linear congruence,
one of the form

ax ≡ b (mod n).

It’s easy because we’ve really already solved it.
Suppose we have a solution x. Since ax ≡
b (mod n), therefore n|ax−b, so there is some num-
ber y such that ny = ax− b, in other words,

ax− ny = b.

That’s just a linear equation in two unknowns, and
we know how to find all it’s solutions. Namely, let
d = (a, n). If d 6 | b, then there are no solutions.
Otherwise the Euclidean algorithm gives us one so-
lution, and then we can find the rest.

Let’s record this as a theorem, and supply the
details in a proof.

Theorem. The congruence

ax ≡ b (mod n)
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has a solution if and only if d|b where d = (a, n).
When d|b, then the solution is unique modulo n/d.
Thus, if (a, n) = 1, the congruence ax ≡ b (mod n)
always has a unique solution.

Proof: As mentioned just above, the congruence
ax ≡ b (mod n) has a solution if and only if the
equation ax − ny = b has a solution. More pre-
cisely, if (x, y) is a solution to the equation, then x
is a solution to the congruence. (Thus, a solution
to the congruence is part of a solution to the equa-
tion.) The equation has a solution if and only if
d|b, therefore the congruence has a solution if and
only if d|b.

Let’s suppose now that d|b. We’ve seen that ev-
ery solution to the equation ax − ny = b is of the
form

x = x0 + t(n/d), y = y0 + t(n/d)

where (x0, y0) is a particular solution (which we can
find with the help of the Euclidean algorithm), and
t is any integer. Therefore, every solution to the
congruence ax ≡ b (mod n) is of the form

x = x0 + t(n/d).

But
x0 + t(n/d) ≡ x0 (mod n/d),

so the congruence has a unique solution modulo
n/d. q.e.d.
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