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Due Wednesday. Asmt. 8, , from page 76, exer-
cises 1–3, 7–9, 11–13, 17, 20.

Due Friday. Asmt. 9, from page 82, exercises 1,
2, 4, 10; and from page 86, exercises 1, 2, 6, 7

Last time. Linear congruences and the Chinese
remainder theorem. We proved two important the-
orems.

Theorem. The linear congruence ax ≡ b (mod n)
has a solution if and only if d|b where d = (a, n).
When d|b, then the solution is unique modulo n/d.
Thus, if (a, n) = 1, the congruence ax ≡ b (mod n)
always has a unique solution.

Chinese remainder theorem. If n1, n2, . . .nk are k
pairwise relatively prime numbers, then the system
of k linear congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

has a unique solution modulo the product
n1n2 . . . nk.

Next time. Pseudoprimes. Multiplicativity of Eu-
ler’s φ function. Evaluating Euler’s φ function.

Today. We’ll discuss a couple more things from
the section on congruences before going on to dis-
cuss Euler’s phi function, also called Euler’s totient
function.

Interpretation of the Chinese remainder
theorem as an isomorphism of rings. That’s
in the notes from last time, but we didn’t have time
to discuss it.

Systems of linear congruences with the
same modulus. The Chinese remainder theorem
deals with linear systems when the moduli are rela-
tively prime. When the congruences have the same
modulus n, it’s easier to solve them. Since Zk is
a ring, you can use all the usual techniques you
would use for simultaneous equations, so long as
those techniques only involve addition, subtraction,
and multiplication. You can also use division, but
you have to be careful, that is, if you want to divide
a congruence by a, make sure a is relatively prime
to n.

For example, to simplify the congruence

6x + 10y ≡ −14 (mod 3),

you can divide it by 2 since 2 is relatively prime to
3 and that yields the congruence

3x + 56 ≡ −7 (mod 3).

Sometimes you’ll have to find the inverse of a
modulo n before dividing. Suppose, for example,
you wanted to divide the congruence

7x− 21y ≡ 8 (mod 11)

by 7. You’ll need to do something special because
7 doesn’t easily divide 8, but it does modulo 11.
A general method that works is to find the recip-
rocal of 7 modulo 11, that is, solve the equation
7x ≡ 1 (mod 11). That gives x = 8 since 56 is one
more than a multiple of 11. The above congruence
becomes

x− 3y ≡ 8 · 8 ≡ 9 (mod 11).
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Even when you want to divide an equation by a
not relatively prime to n, you can do that, but it
will change the modulus. The first theorem quoted
above from last meeting applies. For example, to
simplify the congruence

28x− 14y ≡ 14 (mod 35),

you would like to divide by a = 14, but 14 and
n = 35 aren’t relatively prime; their greatest com-
mon divisor is d = 7. The solution will be unique
modulo n/d = 5, so after dividing by 14, we get the
congruence

2x− y ≡ 2 (mod 5).

If that was just one of several congruences in a sys-
tem, this change of modulus will make it more dif-
ficult to complete the solution because now not all
the congruences have the same modulus.

Euler’s phi function. This function is defined
by setting φ(n) to the number of positive integers
less than n which are relatively prime to n. It’s
called Euler’s φ function or Euler’s totient func-
tion. Euler didn’t call it a totient function; he
didn’t even use the letter phi; Gauss introducted
that notation. Apparently, it wasn’t until 1879 that
Sylvester called a positive integer smaller than n
but relatively prime to n a totative, and since Eu-
ler’s φ function counted totatives, it was called a
totient function. Why Sylvester used the word to-
tative is unclear. It seems to be made up from the
Latin stem tot meaning “so many” and the ending
-itive.

Anyway, these totatives are the elements of the
ring Zn that have reciprocals, and that’s what
makes them important.

As Stark does in the text, you don’t have to rep-
resent ZN by the standard complete residue sys-
tem modulo n, namely the set {0, 1, . . . , n − 1};
you could use any complete residue system. And
if you do that, then the elements that have recip-
rocals form what is called a reduced residue sys-
tem. That’s sort of clumsy to do, so we’ll stick to
{0, 1, . . . , n− 1}.

Examples. Let n=10. What are the positive inte-
gers less than 10 but relatively prime to 10, that
is the totatives? They’re 1, 3, 7, and 9. There-
fore φ(10) = 4. What are the reciprocals of these
totatives modulo 10? We’ll put them in a table.

k 1 3 7 9
k−1 1 7 3 9

We’ll work out a larger example in class.

Fermat’s little theorem and Euler’s the-
orem. Back in the 1640 Fermat noticed that
when p is a prime, then ap ≡ a (mod p), and if
a 6≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

In 1760 Euler generalized this using his φ func-
tion. After the statement of Euler’s theorem, we’ll
look at an example or two, prove it, then derive
Fermat’s little theorem from Euler’s theorem.

Euler’s Theorem: If a is relatively prime to n, then

aφ(n) ≡ 1 (mod n).

Example. Let n = 10. We can take any of the four
totatives 1, 3, 7, or 9 for a. Let’s take a = 7. Then
Euler’s theorem says 74 ≡ 1 (mod 10). That’s easy
to verify since 72 ≡ −1 (mod 10).

Proof of Euler’s therem. Consider what multiplying
by a modulo n does to the set of totatives

T = {a1, a2, . . . , aφ(n)}.

Take one of the totatives ai. Both a and ai are
relatively prime to n, therefore their product aai is
also relatively prime to n, and when aai is reduced
modulo n to a positive integer less than n, it’s still
relatively prime to n, and, therefore, another tota-
tive. Thus, multiplication by a is a function from
the set of totatives to itself, T → T . But a has an
inverse modulo n, a−1, and multiplication by a−1 is
inverse to multiplication by a, so every totative aj

is of the form aai for exactly one i.
Now consider two products, the first product

a1a2 . . . aφ(n) being of all the totatives, and the sec-
ond product of all the totatives multiplied by a,
that is (aa1)(aa2) . . . (aaφ(n)). These two products
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have all the same terms since every totative aj is
aai for exactly one i. Therefore

a1a2 . . . aφ(n) ≡ (aa1)(aa2) . . . (aaφ(n)) (mod n).

We can divide this congruence by each totative ai

since it’s relatively prime to n, and that gives us

1 ≡ aφ(n) (mod n). q.e.d.

Fermat’s little theorem. If p is prime, then

ap ≡ a (mod p).

Furthermore, if a 6≡ 0 (mod p), then

ap−1 ≡ 1 (mod p).

(We’ll prove this in class.)
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