Math 126 Number Theory

Prof. D. Joyce, Clark University

3 Mar 2006

Due Today. Asmt. 9, from page 82, exercises 1, $2,4,10$; and from page 86 , exercises $1,2,6,7$
Next time. Primitive roots, Section3.7.
Last time. Totatives and Euler's ϕ function.
Today. Fermat's little theorem and Euler's theorem. Pseudoprimes. Multiplicativity of Euler's ϕ function.

Fermat's little theorem and Euler's theorem. Back in the 1640 Fermat noticed that when p is a prime, then $a^{p} \equiv a(\bmod p)$, and if $a \not \equiv 0(\bmod p)$, then $a^{p-1} \equiv 1(\bmod p)$.

In 1760 Euler generalized this using his ϕ function.
Euler's Theorem: If a is relatively prime to n, then

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Proof: Consider what multiplying by a modulo n does to the set of totatives

$$
T=\left\{a_{1}, a_{2}, \ldots, a_{\phi(n)}\right\} .
$$

Take one of the totatives a_{i}. Both a and a_{i} are relatively prime to n, therefore their product $a a_{i}$ is also relatively prime to n, and when $a a_{i}$ is reduced modulo n to a positive integer less than n, it's still relatively prime to n, and, therefore, another totative. Thus, multiplication by a is a function from the set of totatives to itself, $T \rightarrow T$. But a has an inverse modulo n, a^{-1}, and multiplication by a^{-1} is inverse to multiplication by a, so every totative a_{j} is of the form $a a_{i}$ for exactly one i.

Now consider two products, the first product $a_{1} a_{2} \ldots a_{\phi(n)}$ being of all the totatives, and the second product of all the totatives multiplied by a,
that is $\left(a a_{1}\right)\left(a a_{2}\right) \ldots\left(a a_{\phi(n)}\right)$. These two products have all the same terms since every totative a_{j} is $a a_{i}$ for exactly one i. Therefore

$$
a_{1} a_{2} \ldots a_{\phi(n)} \equiv\left(a a_{1}\right)\left(a a_{2}\right) \ldots\left(a a_{\phi(n)}\right)(\bmod n) .
$$

We can divide this congruence by each totative a_{i} since it's relatively prime to n, and that gives us

$$
1 \equiv a^{\phi(n)}(\bmod n)
$$

Fermat's little theorem. If p is prime, then

$$
a^{p} \equiv a(\bmod p)
$$

Furthermore, if $a \not \equiv 0(\bmod p)$, then

$$
a^{p-1} \equiv 1(\bmod p) .
$$

(We'll prove this in class.)
Pseudoprimes. Fermat's theorem says that if p is prime, then $a^{p} \equiv a(\bmod p)$. But do any other numbers have this property that aren't prime? Yes. We'll look at the case when $a=2$ and call a nonprime integer n satisfying the condition

$$
2^{n} \equiv 2(\bmod n)
$$

a pseudoprime with respect to 2 or more simply, just a pseudoprime. An example of a pseudoprime is $n=341$.
Multiplicativity of Euler's ϕ function. We've seen two multiplicative functions already, $d(n)$ the number of divisors of n, and $\sigma(n)$ the sum of the divisors of n. We'll show that $\phi(n)$ is another multiplicative function. Recall the defintion of multiplicative function.

Definition. A function f defined on the natural numbers \mathbf{N} is said to be multiplicative if $f(m n)=$ $f(m) f(n)$ whenever m and n are relatively prime.

We won't formally prove that ϕ is multiplicative, but we'll look at an example that is sufficiently generic so that we could extract a proof from the example.

Once we know ϕ is multiplicative, it's fairly easy to evaluate $\phi(n)$ given a prime factorization of n. Suppose that prime factorization is

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

Then

$$
\phi(n)=\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}}\right) \cdots \phi\left(p_{k}^{e_{k}}\right)
$$

So, to complete the evaluation of $\phi(n)$, all we have to know is how to evaluate ϕ at at prime power p^{e}. The positive integers less than p^{e} that are not relatively prime to p^{e} are

$$
p, 2 p, 3 p, \ldots,\left(p^{e-1}-1\right) p
$$

Since there are p^{e-1} of them not relatively prime to p^{e}, therefore there are $p^{e}-p^{e-1}$ that are relatively prime to p^{e}. Thus,

$$
\phi\left(p^{e}\right)=p^{e}-p^{e-1} .
$$

Example: Evaluate $\phi(100000)$. We're computing the number of positive integers less than a million relatively prime to a million.

$$
\begin{aligned}
\phi(1000000) & =\phi\left(2^{6} 5^{6}\right)=\phi\left(2^{6}\right) \phi\left(5^{6}\right) \\
& =(64-32)(15625-3125) \\
& =400000
\end{aligned}
$$

