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Due Today. Asmt. 9, from page 82, exercises 1,
2, 4, 10; and from page 86, exercises 1, 2, 6, 7

Next time. Primitive roots, Section3.7.

Last time. Totatives and Euler’s φ function.

Today. Fermat’s little theorem and Euler’s theo-
rem. Pseudoprimes. Multiplicativity of Euler’s φ
function.

Fermat’s little theorem and Euler’s the-
orem. Back in the 1640 Fermat noticed that
when p is a prime, then ap ≡ a (mod p), and if
a 6≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

In 1760 Euler generalized this using his φ func-
tion.

Euler’s Theorem: If a is relatively prime to n, then

aφ(n) ≡ 1 (mod n).

Proof: Consider what multiplying by a modulo n
does to the set of totatives

T = {a1, a2, . . . , aφ(n)}.

Take one of the totatives ai. Both a and ai are
relatively prime to n, therefore their product aai is
also relatively prime to n, and when aai is reduced
modulo n to a positive integer less than n, it’s still
relatively prime to n, and, therefore, another tota-
tive. Thus, multiplication by a is a function from
the set of totatives to itself, T → T . But a has an
inverse modulo n, a−1, and multiplication by a−1 is
inverse to multiplication by a, so every totative aj

is of the form aai for exactly one i.
Now consider two products, the first product

a1a2 . . . aφ(n) being of all the totatives, and the sec-
ond product of all the totatives multiplied by a,

that is (aa1)(aa2) . . . (aaφ(n)). These two products
have all the same terms since every totative aj is
aai for exactly one i. Therefore

a1a2 . . . aφ(n) ≡ (aa1)(aa2) . . . (aaφ(n)) (mod n).

We can divide this congruence by each totative ai

since it’s relatively prime to n, and that gives us

1 ≡ aφ(n) (mod n). q.e.d.

Fermat’s little theorem. If p is prime, then

ap ≡ a (mod p).

Furthermore, if a 6≡ 0 (mod p), then

ap−1 ≡ 1 (mod p).

(We’ll prove this in class.)

Pseudoprimes. Fermat’s theorem says that if
p is prime, then ap ≡ a (mod p). But do any other
numbers have this property that aren’t prime? Yes.
We’ll look at the case when a = 2 and call a non-
prime integer n satisfying the condition

2n ≡ 2 (mod n)

a pseudoprime with respect to 2 or more simply,
just a pseudoprime. An example of a pseudoprime
is n = 341.

Multiplicativity of Euler’s φ function.
We’ve seen two multiplicative functions already,
d(n) the number of divisors of n, and σ(n) the sum
of the divisors of n. We’ll show that φ(n) is an-
other multiplicative function. Recall the defintion
of multiplicative function.
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Definition. A function f defined on the natural
numbers N is said to be multiplicative if f(mn) =
f(m)f(n) whenever m and n are relatively prime.

We won’t formally prove that φ is multiplicative,
but we’ll look at an example that is sufficiently
generic so that we could extract a proof from the
example.

Once we know φ is multiplicative, it’s fairly easy
to evaluate φ(n) given a prime factorization of n.
Suppose that prime factorization is

n = pe1
1 pe2

2 · · · pek
k .

Then
φ(n) = φ(pe1

1 )φ(pe2
2 ) · · ·φ(pek

k ).

So, to complete the evaluation of φ(n), all we have
to know is how to evaluate φ at at prime power
pe. The positive integers less than pe that are not
relatively prime to pe are

p, 2p, 3p, . . . , (pe−1 − 1)p.

Since there are pe−1 of them not relatively prime to
pe, therefore there are pe − pe−1 that are relatively
prime to pe. Thus,

φ(pe) = pe − pe−1.

Example: Evaluate φ(100000). We’re computing
the number of positive integers less than a million
relatively prime to a million.

φ(1000000) = φ(2656) = φ(26)φ(56)

= (64− 32)(15625− 3125)

= 400000
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