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Due Friday. Asmt. 10. From page 106: 2, 4, 5,
9; and from page 108 Misc. exercises: 8, 15. Treat
these last two as challenge problems. We’ll have
time on Wednesday for hints if you want them.

Next time. After we finish the discussion on prim-
itive roots, we’ll start on higher degree Diophantine
equations in chapter 5. We’ve already completed
the general theory of linear Diophantine equations.
In chapter 5 we’ll look at Pythagorean triples—
mentioned in the introduction to the course—in
more detail. We’ll also consider the Fermat/Wiles
theorem, at least the statement of it and some low
degree cases of it, and discuss the Pell equation.

Last time. Fermat’s little theorem and Euler’s
theorem. Pseudoprimes. Multiplicativity of Euler’s
φ function.

Today. Primitive roots.

The group of totatives. Recall that a totative
modulo n is an element of Zn relatively prime to
n, that is, a number a less than or equal to n but
relatively prime to n. We’ve seen that the number
of totatives is the value of the Euler phi function,
φ(n).

The set of totatives modulo n forms a mathemat-
ical structure called an Abelian group. An Abelian
group is a set equipped with a binary operation,
here denoted as multication, satisfying the follow-
ing axioms

1. Associativity. (ab)c = a(bc) for all elements a,
b, and c.

2. Commutativity. ab = ba for all elements a and
b.

3. Identity. There is an element 1 such that 1a =
a for all a.

4. Inverses. For each element a there is another
element, denoted a−1 such that aa−1 = 1.

Although the axioms don’t state it, the element
1 is unique. Also, each element a has a unique
inverse. These two statements of uniqueness can
be proved from the axioms, in fact, commutativity
is not required. By the way, a group has the same
axioms as an Abelian group except commutativity
is not required.

The set of totatives modulo n is an Abelian group
because (1) the product of two totatives is another
so that the binary operation of multiplications is
defined on the set of totatives, (2) multiplication
is, of course, associative and commutative, (3) 1 is
a totative, and (4) totatives have inverses modulo
n.

The order of a totative. The order of an el-
ement a in a group is the smallest positive power
of a that is the identity 1. Thus, the order of a
totative a is the smallest positive b such that

ab ≡ 1 (mod n).

The order of a is denoted ordn(a).

Example. Let’s make a table of powers of totatives
modulo n = 20 listing all the totatives a and their
powers until some power becomes 1.

a 1 3 7 9 11 13 17 19
a2 9 9 1 1 9 9 1
a3 7 3 17 13
a4 1 1 1 1

ordn(a) 1 4 4 2 2 4 4 2
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Note that the orders of the 8 totatives are numbers
which divide 8, but none of them happen to equal
8.

Example. Let’s do another one when n is a prime
number, say n = 11

k 1 2 3 4 5 6 7 8 9 10
k2 4 9 5 3 3 5 9 4 1
k3 8 5 9 4 7 2 6 3
k4 5 4 3 9 9 3 4 5
k5 10 1 1 1 10 10 10 1
k6 9 5 4 3
k7 7 8 6 2
k8 3 4 9 5
k9 6 2 8 7
k10 1 1 1 1

ordn(k) 1 10 5 5 5 10 10 10 5 2

Note that the orders of the 10 totatives are numbers
which divide 10, and some of them do happen to
equal 10. We’ll call those primitive roots.

Primitive roots. A primitive root modulo n is
a totative k whose order is φ(n), that is,

ordn(k) = φ(n).

In the last two examples, we found that there
were no primitive roots modulo 20, but there were
four primitive roots modulo 11, namely, 2, 6, 7, and
8.

One nice thing about primitive roots is that ev-
ery totative is a power of each primitive root. For
instance, the powers of the primitive root 2 modulo
11 are the 10 totatives modulo 11.

In the next couple of theorems, we’ll develop
some properties of orders and primitive roots. Two
important theorems are that the order of a totative
always divides φ(n) and that there are always prim-
itive roots modulo primes. The proofs of these the-
orems take time to develop, so we’ll follow Stark’s
well-prepared presentation. Even so, we’ll omit the
proofs of the later theorems.

Since in these theorems there is a fixed value of
n, let’s omit the (mod n) in all the congruences
except in the statements of the theorems.

First, we’ll need his theorem 3.25, a technical
lemma that makes the rest of the proofs much eas-
ier.

Lemma. If two positive powers b and c of a totative
a are congruent to 1 modulo n, then a raised to the
greatest common divisor d = (b, c) is also congruent
to 1 modulo n. That is, modulo n,

ab ≡ 1 and ac ≡ 1 imply a(b,c) ≡ 1.

Proof: Since d is the greatest common divisor of b
and c, therefore d is a linear combination of them,
that is,

d = rb + sc

for some integers r and s. Therefore,

ad ≡ arb+sc ≡ (ab)r(ac)s ≡ 141s ≡ 1.

Note that r or s may be negative, but a totative a
has negative powers modulo n, and the usual laws
of exponentiation are valid even if some of the ex-
ponents are negative. q.e.d.

Theorem. The order, ordn(a), of a totative a di-
vides b if and only if ab ≡ 1 (mod n).

Proof ⇒: It is always the case that aordn(a) ≡ 1, so
if ordn(a)|b, say c ordn(a) = b, then

ab ≡ ac ordn(a) ≡ (aordn(a))c ≡ 1c ≡ 1.

Proof ⇐: Suppose that ab ≡ 1 (mod n). Then
since aordn(a) ≡ 1 also, therefore, by the lemma
above, ad ≡ 1 (mod n) where d = (b, ordn(a)). But
ordn(a) is the smallest power to which a can be
raised so that the result is congruent to 1 modulo
n, therefore, d = ordn(a). But that implies ordn(a)
divides b. q.e.d.

Corollary. The order of a totative a divides φ(n).

Proof: Euler’s theorem says aφ(n) = 1. So, by the
previous theorem, ordn(a) |φ(n). q.e.d.

This last corollary is a special case of what is
called Lagrange’s theorem in group theory. La-
grange’s theorem says that the number of elements
in a subgroup divides the number of elements in the
entire group, called the order of the group. That

2



implies that the order of a element in a group di-
vides the order of the group. Our particular group,
the group of totatives modulo n, has φ(n) elements,
so that theorem translates in our case to the corol-
lary above.

The theorems so far apply to any positive integer
n. Now, we’ll specialize to the case where n is a
prime, and we’ll denote it p instead. We’ll omit the
proofs and treat the remainder of this section as a
survey.

Theorem. The congruence

xd ≡ 1 (mod p)

has exactly d solutions when d divides p − 1 (and
none when d doesn’t divide p− 1).

Example. Refer to the example above when p = 11.
The divisors of p − 1 = 10 are 1, 2, 5, and 10. All
10 totatives, 1 through 10, satisfy the congruence

x10 ≡ 1 (mod 11).

That’s just Fermat’s theorem. There are five solu-
tions to the congruence

x5 ≡ 1 (mod 11),

namely x ≡ 1, 3, 4, 5, and 9. There are two solu-
tions to the congruence

x2 ≡ 1 (mod 11),

namely x ≡ 1, 10, or, more conventionally stated,
x = ±1. And the only solution to the congruence
x1 ≡ 1 (mod 11) is, of course, x ≡ 1.

Theorem. If d divides p− 1, then there are exactly
φ(d) totatives whose order is d. In particular, there
are exactly φ(p− 1) primitive roots of p.

Example. Take p = 11. There is φ(1) = 1 totative
of order 1, namely 1. There is φ(2) = 1 totative of
order 2, namely 10 (that is, −1). There are φ(5) =
4 totatives of order 5, namely 3, 4, 5, and 9. Finally,
there are φ(10) = 4 totatives of order 10, namely 2,
6, 7, and 8. Those are the primitive roots modulo
11.
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