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Quiz Monday.

Last time. The group of totatives modulo n. The
order of a totative a, denoted ordn(a). Primitive
roots. A couple of theorems including these two
important ones:

Corollary. The order of a totative a divides φ(n).

Theorem. For a prime p, if d divides p − 1, then
there are exactly φ(d) totatives whose order is d.
In particular, there are exactly φ(p − 1) primitive
roots of p.

Today. Public-key cryptography, in particular, the
mathematics behind the RSA algorithm.

The most used cryptography system is the RSA
algorithm proposed by Rivest, Shamir, and Adle-
man in their article “On Digital Signatures and
Public Key Cryptosystems,” Communications of
the ACM 21 (1978): 120–126. We’ll look at the
number theory behind the algorithm today. We
only need what we’ve already studied, the most
important parts being (1) the Euclidean algorithm,
and (2) Euler’s theorem:

aφ(n) ≡ 1 (mod n)

for a relatively prime to n.
This is a public-key system in which the key

needed to encode messages is made public, but
the key needed to decode messages is kept private.
It works because the private key cannot be deter-
mined from the public key. (At least it can’t be
determined easily.)

The RSA algorithm is based on exponentiation
modulo n. The encoding and decoding algorthims
are actually functions Zn → Zn. That means that
the message has to start out as an element a in
Zn, that is, a number 0 ≤ a < n. A real message
is actually a string of characters, so a preliminary
coding is needed to convert that into a string of
numbers modulo n.

This RSA system is public-key which means the
algorithm for coding is made public, but the inverse
algorithm for decoding is kept private. You would
think that if you knew one function, it wouldn’t
be hard to find the inverse function. But there are
a number of these trap-door functions that don’t
seem to be easily inverted.

Here are the steps in creating the two keys for
the encoding and decoding functions for the RSA
system.

1. Select two large prime numbers p and q, and let
n = pq. Then φ(n) = φ(p)φ(q) = (p−1)(q−1).

2. Select a number e relatively prime to φ(n).
(This number e can be pretty small, typically
e = 3.)

3. Compute d ≡ e−1 (mod φ(n)), that is, solve
the congruence ex ≡ 1 (mod φ(n)), and call
the solution d. Solving that linear congruence
will involve the Euclidean algorithm.

4. The encoding algorithm is the function Zn →
Zn which converts the original message a into
the coded message ae (mod n). Make public
this encoding algorithm, that is, make public
n and e.
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5. The decoding algorithm is the function Zn →
Zn which converts an coded message b back
into the original message bd (mod n). Keep
private this decoding algorthm, that is, don’t
tell anyone d, and don’t tell anyone p or q ei-
ther, because then d could be determined.

Why is the decoding algorithm actually inverse to
the encoding algorithm? Let’s check that starting
with a message a, then encoding it, then decoding
it, returns the original message a. That is, we need
to verify the congruence

(ae)d ≡ a (mod n).

We’ll do that in two cases. First, when a is rela-
tively prime to n (which is the case for nearly all a).
In that case, we can use Euler’s theorem modulo n.
We’ll also use the fact that ed ≡ 1 (mod φ(n)), that
is, that ed = 1 + c φ(n) for some number c. Then,
modulo n we have

(ae)d ≡ aed

≡ a1+c φ(n)

≡ a (aφ(n))c

≡ a 1c ≡ a (mod n)

That takes care of the case that (a, n) = 1.
Suppose now that a is not relatively prime to n.

If a = 0, then clearly, (ae)d ≡ a (mod n). Other-
wise a is divisible by exactly one of the two primes
p and q. Let’s say p divides it. Of course, modulo
p we have (ae)d ≡ 0 ≡ a (mod p). Now, since a is
relatively prime to q, we can apply Euler’s theorem
modulo q. Then we have

(ae)d ≡ aed

≡ a1+c φ(n)

≡ a1+c(p−1)(q−1)

≡ a (aq−1)c(p−1)

≡ a 1c(p−1) ≡ a (mod q)

Now, since (ae)d ≡ a both modulo p and modulo q,
therefore the congruence holds modulo their prod-
uct n = pq.

That finishes the proof that the decoding func-
tion actually is inverse to the encoding function.
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