
Math 126 Number Theory

Prof. D. Joyce, Clark University

20 Mar 2006

Due Friday. Page 148: 1, 4, and page 151: 3, 7,
11.

Second test. Wednesday, March 8.

Quiz Today.

Last time. Finished the discussion on public-key
cryptography and the RSA algorithm.

Next time. We won’t finish the notes below today.
Next time we’ll start where we leave off and perhaps
continue on with a detailed analysis of Pythagorean
triples.

Today. Begin higher degree Diophantine equations
in chapter 5. We’ve already completed the general
theory of linear Diophantine equations. In chap-
ter 5 we’ll look at Pythagorean triples—mentioned
in the introduction to the course—in more detail.
We’ll also consider the Fermat/Wiles theorem, at
least the statement of it and some low degree cases
of it, and discuss the Pell equation.

The statement of the Fermat/Wiles theo-
rem. At our next meeting we’ll solve the ancient
problem of finding all the Pythagorean triples, the
solutions to the Diophantine equation

x2 + y2 = z2.

Euclid describes these solutions in X.29 of his El-
ements, but they were probably all known to the
Greek mathematicians before him. Indeed, they
were known to the ancient Babylonians over a mil-
lennium before that.

The solution to this Pythagorean triples equation
was also included by Diophantus a few centuries af-
ter Euclid in Diophantus’ Arithmetic. This seems

to have been the inspiration for Fermat to general-
ize the problem. He likely began with the analogous
equation in three dimensions

x3 + y3 = z3.

That equation asks what two cubes with integer
side lengths x and y have a combined volume equal
to that of another cube with integer side length z?
It is likely that Fermat had a proof that there were
no solutions. (Naturally, he only accepted a solu-
tion where all three integers were positive.) Fermat
then went on to look at higher powers than 3. He
did have a proof for the case n = 4, and he con-
cluded that there were no solutions to

xn + yn = zn

for any n > 2. It’s unlikely he had a general proof,
but he might have had partial proofs that convinced
him, and he wrote in the margin of his copy of
Diophantus’ Arithmetic that he could prove it, but
the margins were too small to hold his proof.

After Fermat’s death, his son published his works
and included that statement from the margin. For
the next three hundred years, partial progress was
made on the proof of Fermat’s last theorem, also
called Fermat’s conjecture, but it wasn’t until the
1990s that a complete proof, a proof by Wiles, was
constructed.

Preliminary note on the Fermat equation
xn + yn = zn. In order to prove there are no so-
lutions for all n > 2, it’s enough just to consider
certain of these n. For instance, if we know there
are no solutions when n = 3, then we can conclude
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that there are no solutions for n = 6 because a solu-
tion for x6+y6 = z6 provides one for n = 3, namely
(x2)3 + (y2)3 = (z2)3. Generally speaking, if there
are no solutions for n, then there are no solutions
for any multiple of n.

That implies that we only need to consider n that
are odd primes and n = 4. On another day, we’ll
look at Fermat’s proof for n = 4.

Euler’s conjecture. Euler stated a conjecture
1778 that generalized Fermat’s, namely, for n > 2
no nth power is the sum of fewer than n nth powers.
So, for instance, it takes at least three cubes to sum
to a cube, and at least four fourth powers to sum
to a fourth power.

Just as Fermat’s conjecture was suspected to be
true, so was Euler’s stronger conjecture. But it
turned out to be false. In 1966 Lander and Parkin
used a computer search to find a counterexample
when n = 5. They found a solution to

v5 + w5 + x5 + y5 = z5,

namely

275 + 845 + 1105 + 1335 = 1445.

In number theory, and in mathematics in general,
a statement cannot be accepted as true until it’s
proved, and the proof must be general. On the
other hand, to show that a general statement is
false, it is enough to give one counterexample, as
Lander and Parkin did for Euler’s conjecture.

Diophantine equations and homogeneous
equations. By a Diophantine equation we mean
a polynomial equation in one or more variables
where the acceptable solutions are limited to in-
tegers, sometimes just to positive integers. On oc-
casion, we’ll also accept rational numbers—as Dio-
phantus did—but we can convert the problem of
finding rational solutions to an algebraic equation
to a problem of finding integral solutions to an as-
sociated equation with one more unknown.

For example, suppose we wanted to find all the
rational solutions to the equation

3x2 + xy = 14.

If (x, y) is a rational solution, then we could write
that solution as (x, y) = (s/u, t/u) where u is a
common denominator of the rational numbers x
and y. Then the equation becomes

3
( s

u

)2

+
( s

u

)( t

u

)
= 14.

Clearing the denominators simplifies the equation
to

3s2 + st = 14u2.

Now we can see that rational solutions (x, y) to the
original equation correspond to integral solutions
(s, t, u) of this new equation.

One property of this new equation is that all the
terms have the same degree; in the example, that
degree is 2. A polynomial equation all of whose
terms have the same degree is called a homogeneous
equation. The process we just went through “ho-
mogenizes” the equation. Many of the interesting
Diophantine equations are homogeneous equations.

Factoring an equation to solve it. Not all
equations factor, but if they can be, then that’s one
way to solve them. For example, let’s find all the
positive solutions for the cubic Diophantine equa-
tion

x3 − y3 = 19.

Before beginning, we can see that for any positive
solution, x has to be greater than y.

You recall that there is a formula to factor the
difference of two cubes. It’s

x3 − y3 = (x− y)(x2 + xy + y2).

We can rewrite our equation as

(x− y)(x2 + xy + y2) = 19.

Now x−y is positive, so the only two possible values
that x−y can have are 1 and 19, because those are
the only positive factors of 19.

Case 1: Suppose x− y = 1. Then

x2 + xy + y2 = 19.
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Replacing x by y+1, we see (y+1)2+(y+1)y+y2 =
19, which simplifies to the equation 3y2 + 3y + 1 =
19, which further simplifies to

y2 + y = 6.

The only positive solution to that equation is y = 2,
in which case, x = 3.

Case 2: Suppose x−y = 19. Then x2+xy+y2 = 1.
But the sum of three positive integers has to be
greater than one, so there are no solutions in case
2.

Thus, the only solution to the original equation x3−
y3 = 19 is (x, y) = (3, 2).

Pell equations. These are the quadratic Dio-
phantine equations of the two forms

x2 − dy2 = ±1

where d is a fixed integer. They’re misnamed for
Pell who didn’t work with them. They occurred in
the works in ancient Greeks, medieval India, and
Fermat also considered them.

They come up in the rational approximation of
the square root of d. If you have a solution to one
of them, you know

|x2 − dy2| = 1.

Divide the equation by y2 and take square roots of
both sides. Then ∣∣∣∣xy −√d

∣∣∣∣ =
1

y
.

In other words, x/y is a close approximation to
√

d.
Perhaps the first example

x2 − 2y2 = ±1

comes from the ancient Greek approximations for√
2. See my commentary on proposition II.10 of Eu-

clid’s Elements.

Using congruences in solving Diophantine
equations. Sometimes you can show a Diophan-
tine equation has no solutions using congruences,

and sometimes you can use congruences to go part-
way in finding the solutions. One important theo-
rem for Pell equations uses this technique.

Theorem. The Pell equation

x2 − dy2 = −1

has no solutions either when 4 divides d or when a
prime p divides d where p is congruent to 3 modulo
4.

Proof: Let’s first take the case when 4 divides d.
Take the equation modulo 4. We get the congru-
ence

x2 − dy2 ≡ −1 (mod 4),

but d ≡ 0 (mod 4), and −1 ≡ 3 (mod 4), so the
congruence simplifies to

x2 ≡ 3 (mod 4).

We know that x2 is always congruent to either 0 or
1 modulo 4, never to 2 or 3, so this congruence is
never satisfied. Since the congruence has no solu-
tions, neither does the original equation.

Now let’s look at the other case, when some
prime p, congruent to 3 modulo 4, divides d. This
time, take the equation modulo p. Then

x2 − dy2 ≡ −1 (mod p).

Since d ≡ 0 (mod p), that congruence simplifies to

x2 ≡ −1 (mod p).

But that congruence doesn’t have any solutions, as
we’ll prove in a moment in a separate theorem.

Thus, in neither case does that Pell equation have
a solution. q.e.d.

Now we need to prove the promised theorem. It
should logically come before the theorem we just
proved. To keep from making a circular argument
we just have to make sure we don’t use the preced-
ing theorem in the proof.

Theorem. When a prime p is congruent to 3 modulo
4, then the congruence

x2 ≡ −1 (mod p)
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has no solutions.

Proof: When p ≡ 3 (mod 4), then 4 does not divide
p−1, but 2 does divide p−1. Therefore, the greatest
common divisor of p− 1 and 4 must be 2.

Now suppose that x is a solution to the congru-
ence x2 ≡ −1 (mod p). Then x4 ≡ 1 (mod p).
From Fermat’s theorem, we know that xp−1 ≡
1 (mod p). Since x raised to both the powers 4 and
p−1 is congruent to 1 modulo p, therefore x raised
to their greatest common divisor is also congruent
to 1 modulo p. But their GCD is 2. Hence

x2 ≡ 1 (mod p).

That’s impossible since 1 6≡ −1 (mod p). There-
fore, there are no solutions to the congruence x2 ≡
−1 (mod p). q.e.d.
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