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Due Friday. Page 155: exercises 1, 2, 7. Choose
one of the three and write it up completely.
Whichever one you choose, find all those solutions
where the three numbers in the solution are rela-
tively prime. (In 1 and 2, you can do that because
the equations are homogeneous; in 7 that’s part of
the specific instructions.)

Try to write it up as well as any of the proofs
in the text, or at least as well as I do in my notes
and answer sheets. Every sentence should be com-
plete; every variable that’s introduced should be ex-
plained; every equation should be connected with
words to what has gone on before; and, of course,
the logic should be correct.

Don’t try to write up the final proof until under-
stand what it will be. First, you have to find out
what the solutions to the equation are. That takes
some analysis. After you have what you think are
all the solutions, then develop the proof that shows
that you have all the solutions. It may take a cou-
ple of drafts to work it up completely. Go over
what you’ve written and be sure that you haven’t
left anything out.

Due Monday. Page 161: exercises 3, 5. Choose
one and write it up completely. Same instructions
as for Friday’s assignment.

Second test. Wednesday, April 5.

Last time. We analyzed Pythagorean triples
which are triples (x, y, z) of positive integers such
that x2 + y2 = z2. We were particularly interested
in primitive Pythagorean triples, those where the
greatest common divisor (x, y, z) is 1, because all
others are multiples of the primitive ones. Here’s
what we did.

We tried the method of factoring. We couldn’t
factor x2 + y2. (You can if you use complex num-
bers, since x2 + y2 = (x+ iy)(x− iy), but we didn’t
go that route.) So we converted the equation to
x2 = z2 − y2 so we could use factor the difference
of two squares. That gave us the equation

x2 = (z + y)(z − y).

The next problem was to factor x2 so that one fac-
tor equalled z + y while the other equalled z − y.

We rejected the factoring x2 = xx with x = z +y
and x = z − y because then y would be 0, and
we’re only looking for positive solutions to the
Pythagorean equation.

Next we factored x2 as x2 · 1 with{
x2 = z + y
1 = z − y

That pair of equations is equivalent to{
z = (x2 + 1)/2
y = (x2 − 1)/2

Thus, we found some solutions when x is an odd
number greater than 1, namely,

(x, y, z) =
(
x, (x2 − 1)/2, (x2 + 1)/2

)
.

Here are the first few of them in a table.

x (x2 − 1)/2 (x2 + 1)/2
3 4 5
5 12 13
7 24 25
9 40 41
11 60 61
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We noted that these were all primitive Pythagorean
triples since y and z differed by 1.

Incidentally, this particular sequence of
Pythagorean triples is attributed to the early
Pythagoreans. Perhaps Pythagoras himself knew
of them.

Next, we tried another factoring x2 = a2b2 with{
a2 = z + y
b2 = z − y

and, of course, a > b. This was a generalization
of the previous factoring since that just had b = 1.
That pair of equations has the solution{

z = (a2 + b2)/2
y = (a2 − b2)/2

Now we have solutions

(x, y, z) =
(
ab, (a2 − b2)/2, (a2 + b2)/2

)
when a and b have the same parity (so that y and z
are integers). We noted that a and b needed to be
relatively prime in order that the triple be primi-
tive. Therefore a and b both need to be odd.

This construction turns out to be precisely Eu-
clid’s as it appears in Proposition 29 of Book X
of his Elements. A table of the first few of these
Pythagorean triples is on a separate sheet.

By the way, besides the sequence of Pythagorean
triples mentioned above (the ones where b = 1)
there’s also another sequence attributed to Plato.
For that, b = a − 2. The first few triples in this
sequence are

(3, 4, 5), (15, 8, 17), (35, 12, 37), (63, 16, 65).

They can also be parameterized as

(x, y, z) = (k2 − 1, 2k, k2 + 1)

with k a positive even number.

Today. We’ll prove the Pythagorean triples we
found last time are all of them. We’ll see how
Pythagorean triples form an Abelian group. We’ll
also begin examining Fermat’s method of descent

and follow Fermat’s use of it to prove x4 + y4 = z4

has no nontrivial solutions.

We found all the Pythagorean triples last
time. But we haven’t proved that we found
them all. We need to show that every primitive
Pythagorean triple (x, y, z) is of the form

(x, y, z) =
(
ab, (a2 − b2)/2, (a2 + b2)/2

)
where a and b are relatively prime odd numbers,
a > b ≥ 1.

All we have to do is prove that the only factoring
of x2 = AB with A = z + y and B = z − y that
we need to consider is when x2 = a2b2 with A = a2

and B = b2. There’s only one factoring that’s more
general, and that’s x2 = a2b2c2 with A = a2c and
B = b2c. That leads to the solution{

z = (a2c + b2c)/2
y = (a2c− b2c)/2

Now, note that if an odd prime p divides c, then
p also divides all three of x, y, and z, leading to
a nonprimitive triple. Thus, we conclude no odd
prime divides c.

On the other hand, 2 could divide c. Then, of
course, x = abc would be even, but y and z could
still be odd. But we know not both x and y are even
(for then z would be even and the triple wouldn’t
be primitive), so we could specify at the outset that
x is odd (by switching it with y if it’s not), and thus
2 does not divide c.

Hence c = 1. That shows the factoring we
used was the most general that leads to a primi-
tive Pythagorean triple. q.e.d.

There is another common parameterization of
the Pythagorean triples besides the one we found.
For that parameterization, we assume x is odd and
y is even (just like with our parameterization), then

(x, y, z) = (u2 − v2, 2uv, u2 + v2)

where where u and v are positive relatively prime
integers with u > v. It’s easy to work out the
formulas connecting these two parameterizations.
They are a = u + v, b = u − v, u = 1

2
(a + b), and

v = 1
2
(a− b).
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Trigonometry and the group associated to
Pythagorean triples. It is not obvious, but there
is a way of taking any two Pythagorean triples and
constructing another one. Here’s how we can see
the group. The original equation x2 + y2 = z2 is
a homogeneous equation in three variables where
we’re looking for integral solutions. We can de-
homogenize it to get a nonhomogeneous equation
where we’re looking for rational solutions as fol-
lows. Divide the equation by z2 to get

(x/z)2 + (y/z)2 = 1

and rename the rational number x/z as X and the
rational number y/z as Y . That gives us the equa-
tion

X2 + Y 2 = 1

of the unit circle. (Note that there’s a faster way
to get this equation. Just set z to 1.)

Since we only want rational solutions to this
equation, we can call rational solutions the points
on the rational unit circle. A few of the points on
this rational curve are

(3
5
, 4

5
), (4

5
, 3

5
), ( 5

13
, 12

13
), (− 5

13
, 12

13
), (1, 0), (0,−1).

Since the circle doesn’t lie entirely in the first quad-
rant of the plane, we shouldn’t ignore points that
have negative coordinates; likewise, we shouldn’t
ignore the four points that have zero coordinates.

Now, how can we add two of these points? We
can interpret them as angles! We can certainly
add two angles together. For instance, 60◦ plus
75◦ equals 135◦. We do have to be careful about
adding angles whose sum is greater than 360◦. For
instance, 180◦ and 270◦ should be 90◦, but all we
have to do is make 360◦ equal to 0◦, and that we can
do if we take degrees modulo 360. In symbolic nota-
tion, the group of angles is R/360Z. This group is
the circle group. Depending on what you scale you
use for measuring angles, you might take R/2πZ or
R/Z instead.

Now, we don’t have the actual angle θ. What we
have is (X, Y ) where X2 + Y 2 = 1. In other words
we have the cosine and sine of the angle.

(X, Y ) = (cos θ, sin θ).

Recall the sum formulas for cosine and sine.

cos(θ + φ) = cos θ cos φ− sin θ sin φ

sin(θ + φ) = sin θ cos φ + cos θ sin φ

If (U, V ) = (cos φ, sin φ) are the corresponding co-
ordinates for the angle φ, and

(S, T ) = (cos(θ + φ), sin(θ + φ))

are the coordinates for the sum of the angles θ +φ,
then these two formulas give

S = XU − Y V

T = Y U + XV

These give us an addition formula for points on the
unit circle. Let’s use the symbol⊕ for this addition.

(X, Y )⊕ (U, V ) = (XU − Y V, Y U + XV ).

From the difference formulas for cosine and sine,
there’s a subtraction formula, too.

(X, Y )	 (U, V ) = (XU + Y V, Y U −XV )

Note that the zero element of this group is the
point (1, 0) corresponding to 0◦.

An example addition:

(3
5
, 4

5
)⊕ ( 5

13
, 12

13
) = (3

5
· 5

13
+ 4

5
· 12

13
, 4

5
· 5

13
− 3

5
· 12

13
)

= (63
65

,−16
65

)

This group structure can be carried over to
Pythagorean triples (x, y, z) but only if two
Pythagorean triples are considered to be the same
if they only differ by scaling. Thus (x, y, z) and
(λx, λy, λz) are to be considered the same where λ
is any nonzero constant. We can turn a a rational
point (X, Y ) on the unit circle into a Pythagorean
triple by adding a third coordinate with value 1 to
get (X, Y, 1) thereby undoing the process we started
out with. The corresponding formulas in homo-
geneous coordinates (x, y, z) for ⊕ can be found
by working from the nonhomogeneous coordinates
(X,Y ). Here’s how. First write the addition for-
mula with the extra coordinate.

(X, Y, 1)⊕ (U, V, 1) = (XU − Y V, Y U + XV, 1).
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Next, replace X by x/z, Y by y/z, U by u/w, and
V by v/w.

(x
z
, y

z
, 1)⊕ ( u

w
, v

w
, 1) = ( xu

zw
− yv

zw
, yu

zw
+ xv

zw
, 1).

Now we clear the denominators for each point.
We’ll replace (x

z
, y

z
, 1) by (x, y, z) by multiplying

each coordinate by z. Likewise, we’ll multiply each
coordinate of ( u

w
, v

w
, 1) by w, and multiply each co-

ordinate of the last point by zw. We end up with
the formula

(x, y, z)⊕ (u, v, w) = (xu− yv, uy + xv, zw).

The formula for subtraction is

(x, y, z)	 (u, v, w) = (xu + yv, uy − xv, zw).

The zero element is (1, 0, 1). An example addition:

(3, 4, 5)⊕ (5, 12, 13) = (63,−16, 65).

Fermat’s method of descent. Early in the
semester we used the following axiom, equivalent
to mathematical induction, or the principle of min-
imization (also called the well-ordering principle).

Axiom. There is no infinite decreasing sequence of
positive integers.

Euclid used this principle frequently in his Ele-
ments. Fermat used it in number theory, too. Fer-
mat would take a particular Diophantine equation,
suppose that there was one solution, and look for
a way to produce a smaller solution from it. If this
worked without fail, then he would have an infinite
decreasing sequence of solutions and could conclude
that no solution could exist. On the other hand, if
the descent stopped with an actual solution, revers-
ing the process would lead to more solutions.

We’ll look at Fermat’s proof that x4+y4 = z4 has
no positive integral solutions. Actually, he proved
something stronger, that the Diophantine equation
x4 + y4 = z2 has no solutions.

Theorem. There are no positive integral solutions
of

x4 + y4 = z2.

Proof: Suppose that x, y, z is a solution.

First, we want to reduce to the case where x
and y are relatively prime. Let d be the great-
est common divisor of them, and let x1 = x/d and
y1 = y/d. Then

d4(x4
1 + y4

1) = z2.

Therefore, d4|z2, so d2|z. Let z1 = z/d2. Then

x4
1 + y4

1 = z2
1 .

We now have a smaller solution where x1 and y1

are relatively prime.
Now we may suppose that x, y, z is a solution

where (x, y) = 1. Following Fermat, we need to
find a smaller solution, and in this case that means
a solution with a smaller value for z.

Note that (x2)2 + (y2)2 = z2, so (x2, y2, z) is
a primitive Pythagorean triple. It turns out that
using the alternate parameterizations of primitive
Pythagorean triples works better here than the pa-
rameterization we found. We’ll take x2 odd, then

(x2, y2, z) = (u2 − v2, 2uv, u2 + v2)

where where u and v are positive relatively prime
integers with u > v. Note that x2 = u2 − v2,
so x2 + v2 = u2. Therefore, (x, v, u) is another
Pythagorean triple, and it’s primitive since u and
v are relatively prime. Therefore,

(x, v, u) = (s2 − t2, 2st, s2 + t2)

where where s and t are positive relatively prime
integers with s > t.

Now, y2 = 2uv. Since u and v are relatively
prime, and u is odd (because (x, v, u) is a primitive
Pythagorean triple), therefore u and 2v are rela-
tively prime. But y2 is their product, so each of u
and 2v is a square. Let

u = z2
2 and 2v = c2,

and since c is even, let c = 2d so that v = 2d2.
Since v = 2st, therefore

st = v/2 = d2.
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But s and t are relatively prime, and their product
is a square d2, therefore each is a square. Let

x2
2 = s and y2

2 = t.

Finally, since s2 + t2 = u, therefore

x4
2 + y4

2 = z2
2 .

The new value z2 is smaller than the old value z
since

z2 ≤ z4
2 = u2 < u2 + v2 = z.

Thus, we have shown that if (x, y, z) is a solution
for the equation x4 + y4 = z2, then there is another
solution with a smaller value of z. As this process
can be repeated without end, that yields an infi-
nite descending sequence of positive integers, which
is impossible. Thus, the equation has no positive
integral solutions. q.e.d.
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