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Last time. Introduction to Pell equations. We
saw some examples of how to find solutions to Pell
equations using continued fractions.

Today. Theory of Pell equations. We’ll see some
theorems that show the methods work that we
looked at last time.

We’ll start with a theorem that shows how to
find infinitely many solutions if you just have one
to start with. Here’s the statement of the theorem,
followed by a lemma that we’ll use to prove it, then
we’ll have the proof of the lemma and the theorem.

Theorem. If the equation x2 − dy2 = 1 has one
solution, then it has infinitely many solutions, while
if the equation x2−dy2 = −1 has one solution, then
not only does it have infinitely many solutions but
also x2 − dy2 = 1 has infinitely many solutions.

Lemma. If (a, b) is a solution to the Diophantine
equation

x2 − dy2 = c,

then solutions to the equations

x2 − dy2 = cn

are recursively defined by

x1 = a

y1 = b

xn+1 = axn + dbyn

yn+1 = bxn + ayn

Proof: We’ll prove this inductively. The base case,
n = 1 is given.

For the inductive step, we assume that (xn, yn)
is a solution of x2 − dy2 = cn, and we’ll show that

(xn+1, yn+1) is a solution of x2 − dy2 = cn+1. One
continued equation will do it.

x2
n+1 − dy2

n+1

= (axn + dbyn)2 − d(bxn + ayn)2

= (a2x2
n + 2dabxnyn + d2b2y2

n)

− d(b2x2
n + 2abxnyn + a2y2

n)

= a2x2
n + 2dabxnyn + d2b2y2

n

− db2x2
n − 2abxnyn − a2y2

n

= a2x2
n + d2b2y2

n − da2y2
n − db2x2

n

= (a2 − db2)(x2
n − dy2

n)

= c · cn = cn+1

q.e.d.
Proof of the theorem: Let (a, b) be a solution of the
first equation x2 − dy2 = 1. Then the all the solu-
tions (xn, yn) provided by the lemma are solutions
of the same equation.

Now let(a, b) be a solution of the second equation
x2 − dy2 = −1. Then (xn, yn) will be a solution of
the first equation when n is even, but of the second
equation when n is odd, since (−1)n is either 1 or
−1 depending on the parity of n. q.e.d.

Now we know how to get more solutions if we
have one, but we still have to find one. That’s
where the continued fractions come in. We’ll talk
about that next time. But there’s more we can get
out of this theorem.

An ancient method for finding square
roots, and Newton’s method. Let’s look at
just the first step, going from (a, b) = (x1, y1) to
(x2, y2). Note that the formulas in the lemma tell
us that

(x2, y2) = (a2 + db2, 2ab)
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We can think of (a, b) as giving one approxima-
tion of

√
d since the equation a2− db2 = c is equiv-

alent to (a

b

)2

= d +
c

b2
.

That says (a/b)2 is near d, so a/b is near
√

d. The
second point (x2, y2) satisfies the same equation
x2 − dy2 = c, so it’s also an approximation of

√
d,

but a much better one since the error is c/y2
2 instead

of c/b2 and y2 is larger than y1 = b.
If we want to quickly find better approximations

to
√

d, then rather than next computing (x3, y3), we
can treat (x2, y2) as the starting point, that is, take
it to be (a, b), and apply the process. When you do
that, you’ll get the (x4, y4) in one step. Then if you
take (x4, y4) as your starting point, you’ll next get
(x8, y8). Thus, you’ll skip over lots of intermediate
approximations of

√
d and quickly get to very good

approximations.
So, the one step we’re looking at is replacing a

b
by

a2 + db2

2ab
. We can rewrite this as 1

2
(a

b
+ d b

a
). Let’s

use the single variable s for the number a
b
. Then,

our first approximation s of
√

d gives us a second
approximation 1

2
(s + d/s). That’s a reasonable im-

provement on the approximation and one that has
been used since ancient times, perhaps even by the
Old Babylonians 4000 years ago.

Here’s a different way of deriving this improve-
ment on the approximation. Suppose we have an
approximation s for

√
d. If s is actually less than√

d, that is, if s2 is less than d, then d/s will be
greater than

√
d; therefore their average 1

2
(s + d/s)

should be closer to
√

d. Likewise if s is actually
greater than

√
d, then d/s will be less than

√
d,

and, in that case too, their average should be closer
to
√

d.
We can see what’s going on graphically if we

move on to the 1600s and use a little analytic
geometry and calculus. Finding the square
root of d is the same as solving the equation
x2 = d, and that, in turn, is the same as find-
ing a root of the polynomial f(x) = x2 − d.
We’ll graph this polynomial in class and see
how Newton’s method is used to solve it. I’ve

got a brief introduction to Newton’s method at
http://aleph0.clarku.edu/∼djoyce/newton/
that we’ll look at.

Editorial. Mathematics is really very well-
connected. A topic like this, Pell’s equation, which
seems to belong to number theory, has strong con-
nections to geometry, computation, linear algebra,
and calculus. That’s not unusual. The many con-
nections among the subjects in mathematics are al-
ways there, but we tend to study mathematics one
subject at a time. There are many good reasons
for doing that, but when we do that, we hide the
connections.
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