Math 126, Number Theory

Quiz Answers

20 Mar 2006

Scale: 8-10 A. 6-7 B. 3-5 C.
Problem 1. [3 points] How many totatives are there modulo 72 ?

The number of totatives (integers relatively prime to n modulo n) is given by Euler's phi function. So, we need to compute $\phi(72)$. The prime factorization of 72 is $72=2^{3} 3^{2}$. Since ϕ is a multiplicative function,

$$
\phi(72)=\phi\left(2^{3}\right) \phi\left(3^{2}\right) .
$$

These last two values, $\phi\left(2^{3}\right)$ and $\phi\left(3^{2}\right)$, can be computed by formula, since $\phi\left(p^{n}\right)=p^{n-1}(p-1)$, or simply counted since 8 and 9 are small numbers. Then $\phi(72)=4 \cdot 6=24$.

Problem 2. [3 points] According to table 2 in our text, the smallest positive primitive root for the prime 101 is 2 . Given that, determine 2^{50} modulo 101. (Do not raise 2 to high powers to answer this question.)

Since 101 is prime, $\phi(101)=100$, and since 2 is a primitive root modulo 101 , the order of 2 is 100. That means that $2^{100} \equiv 1(\bmod 101)$, but no smaller power of 2 is congruent to 1 modulo 101. Hence, the square of 2^{50} is congruent to 1 modulo 101, but 2^{50} itself is not. Note that $\left(2^{5} 0\right)^{2} \equiv 1(\bmod 101)$. Modulo 101, there are exactly 2 values for x such that $x^{2} \equiv 1$, namely $x \equiv \pm 1$. Since 2^{50} is not congruent to 1 , it must be congruent to -1 .

Problem 3. [4; 2 points each part] On orders.
a. Why can't $\operatorname{ord}_{11}(x)$ ever equal 7 ?

The order of an element in \mathbf{Z}_{n} must divide $\phi(n)$, and $\phi(11)=10$, so the only values that $\operatorname{ord}_{11}(x)$ can have are $1,2,5$, and 10 .
b. Compute $\operatorname{ord}_{11}(3)$.

The possible values of $\operatorname{ord}_{11}(3)$ are $1,2,5$, and 10. It's not 1 , since $3 \not \equiv 1(\bmod 11)$. Also, $3^{2}=$ $9 \not \equiv 1(\bmod 11)$, so it's not 2 .

Let's find $3^{5}(\bmod 11)$. Since $3^{3}=27 \equiv$ $5(\bmod 11)$, therefore

$$
3^{5}=3^{2} 3^{3} \equiv 9 \cdot 5 \equiv 45 \equiv 1(\bmod 11) .
$$

Therefore, $\operatorname{ord}_{11}(3)=11$.

