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Conservative vector fields. Recall that a gra-
dient field F is the gradient ∇f of some vector field
f , which is called a potential field for F . We’re
interested in what properties are required of a vec-
tor field F for it to be a gradient field. We’ll use
the term conservative vector field to mean the same
thing as gradient field, but without a particular
scalar field of which it’s the gradient. We’ll see that
there are a couple of other equivalent conditions for
a vector field to be a conservative field.

Path-independent vector line integrals.
We’ll start out by looking at vector fields with
path-independent vector line integrals. We’ll see
soon that these fields are the gradient fields. In the
following definition, we assume that the domain D
of F is a connected region of Rn, otherwise there
won’t be paths between any two points a and b of
D.

Definition 1. We say a vector field F has path-
independent line integrals in a connected domain

D when each vector line integral

∫
x

F · ds depends

only on the endpoints of the path x. That is, if x1

and x2 are any two paths with the initial endpoint
a and same terminal endpoint b, then∫

x1

F · ds =

∫
x2

F · ds.

The unstated important part of this definition is
that x1 and x2 don’t even have to travel the same
curve.

Theorem 2. A vector field F has path-
independent line integrals if and only if all its inte-
grals over simple closed curves C are zero:∮

C

F · ds = 0.

Proof. One direction is easy. Suppose that F has
path-independent line integrals. Let C be a simple
closed curve, starting and ending at the same point
a. Another path with the same endpoint is the
constant path, which we can denote a. Since C
and a have the same endpoints (both being a), their
integrals are the same.∮

C

F · ds =

∫
a

F · ds.

But the path integral over a constant path is 0.
Therefore, the integral over the closed curve C is
also 0.

Now, let’s look at the converse. Suppose that all
its integrals of F over simple closed curves are zero.
We need to show that F has path-independent line
integrals. Let two paths x1 and x2 have the same
endpoints. Reorient x2 in the opposite direction
and attach it to x1 to get a closed curve C. Then∫

x1

F · ds−
∫
x2

F · ds =

∮
C

F · ds.

If C is a simple closed curve, then that last inte-
gral is 0, so the integrals over the paths x1 and
x2 are equal. What’s left to do for this proof is
to show that if F has zero integrals over simple
closed curves, then F has zero integrals over all
closed curves. We can do the case where the closed
curve C has only finitely many self intersections,
but when there are infinitely many self intersec-
tions, the argument is more difficult. q.e.d.

The next two theorems show that gradient fields
are those fields having path-independent line inte-
grals

Theorem 3. Gradient fields have path-
independent line integrals.

Proof. Let F = ∇f be a gradient field with poten-
tial field f . We’ll show F has path-independent line
integrals. Let x be a path in the domain D of F.
The argument depends on the multivariate chain
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rule and on the ordinary fundamental theorem of
calculus.∫

x

F · ds =

∫
x

∇f · ds

=

∫ b

a

∇f(x(t)) · x′(t) dt

=

∫ b

a

d

dt
f(x(t)) dt

= f(x(t))
∣∣∣b
a

= f(x(b))− f(x(a)).

Thus, the integral of F only depends on the the
values of f at the endpoints x(a) and x(b), not on
the path between the endpoints. q.e.d.

Theorem 4. If a vector field has path-independent
line integrals, then it’s a gradient field.

Proof. As mentioned in the definition of path-
independence, we assume that the domain D of the
vector field F is connected, and here that means
path-connected, that is, any two points in D can be
joined by a path entirely in D.

We need to define a scalar-valued function f with
domain D. Fix a point a in the domain D. For a
point b ∈ D, define f(b) as

f(b) =

∫
x

F · ds

where x is any path joining a to b. Since F has
path-independent integrals, this value f(b) is inde-
pendent of the path x, so f(b) is well-defined.

We won’t do it, but you can show that F = ∇f
by directly evaluating ∇f . That involves comput-
ing the ith partial derivatives of f using the defini-
tion of derivative, and that comes down to finding
short paths in the domain of F that are parallel
to the ith axis and letting their lengths approach
0. q.e.d.

Curls and gradient fields. Back when we first
defined curl, we showed that the curl of a gradi-
ent field was 0, that is to say, gradient fields are
irrotational. We did this by verifying the equation

∇× (∇f) = 0.

Now we’ll show the converse, at least when the do-
main D is simply-connected plane region. First, we
need to define what it means for a subset D of Rn

to be simply connected. Intuitively, in R2 a set is
simply connected if it has no holes. In R3 it’s not
enough to have no holes, since the unit sphere has
a “hole” inside it, but the sphere turns out to be
simply connected.

Definition 5. A connected set D in Rn is said to
be simply connected if every simple closed curve C
in D can be continuously shrunk to a point while
remaining in R throughout the deformation. More
precisely, there is a continuous function

γ : [0, 1]× [0, 1]→ D

such that γ(0) is a path [0, 1]→ Rn that describes
the curve C, and γ(1) is a constant path.

In the plane, the interior D of a simply closed
curve C is simply connected.

Theorem 6. If F is an irrotational vector field de-
fined on a simply connected domain in R2, then F
is a gradient field.

Proof. Let C be a simple closed curve in the region
R. We’ll show the path integral

∮
c
F · ds is 0. That

will imply F has path-independent line integrals,
which is equivalent to being a gradient field.

Now, Green’s theorem in the plane is equivalent
to ∮

∂D

F · ds =

∫∫
D

(∇× F) · k dA.

In our case, D is the interior of the closed curve C.
But the curl, ∇× F, is 0, so the double integral is
0. Therefore, the line integral is 0. q.e.d.

After we’ve proved Stokes’ theorem, we’ll be able
to prove the analogous statement for dimension 3.
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