

Section 1.4 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Exercises 1, 3, 5, 11–19 odd, 25

11. Find the area of the parallelogram having vertices (1, 2, 3), (4, -2, 1), (-3, 1, 0), and (0, -3 - 2).

Choose one of the vectors as a base point, say the first, and determine the three displacement vectors to two other points.

$$\mathbf{a} = (4, -2, 1) - (1, 2, 3) = (3, -4, -2)$$

$$\mathbf{b} = (-3, 1, 0) - (1, 2, 3) = (-4, -1, -3)$$

$$\mathbf{c} = (0, -3, -2) - (1, 2, 3) = (-1, -5, -5)$$

The first two of these vectors are along the sides of the parallelogram while the third, being their sum, goes across the parallelogram. The length of the cross product $\mathbf{a} \times \mathbf{b}$ will give the area of the parallelogram. You'll get $\sqrt{750}$.

13. If $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$, what can you say about the geometric relation between \mathbf{a} , \mathbf{b} , and \mathbf{c} ?

One thing you can say is the the volume of the parallelepiped with edges \mathbf{a} , \mathbf{b} , and \mathbf{c} is 0. That means that the three vectors all lie in a plane, that is, they're coplanar. Using the terminology from linear algebra, you can say that the three vectors are dependent.

15. Compute the area of the triangle determined by the vectors $\mathbf{a} = (1, -2, 6)$ and $\mathbf{b} = (4, 3, -1)$.

The area of the triangle is half the area of the parallelogram with those two vectors on its sides, so $\frac{1}{2}\|\mathbf{a}\times\mathbf{b}\|$ will do it. You'll get $\frac{1}{2}\sqrt{1002}$.

17. Compute the area of the triangle having vertices (1,0,1), (0,2,3), and (-1,5,-2).

Choose one of the vertices to be the base point, and let **a** and **b** be the displacement vectors from it to the other two vectors. Then the area of the triangle will be $\frac{1}{2} \|\mathbf{a} \times \mathbf{b}\|$.

- **25.** Suppose that you are given nonzero vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} in \mathbf{R}^3 . Use dot and cross products to give expressions for vectors satisfying the following geometric descriptions.
- **a.** A vector orthogonal to **a** and **b**. Take the cross product $\mathbf{a} \times \mathbf{b}$.
- **b.** A vector of length 2 orthogonal to **a** and **b**. Divide that cross product in part **a** by it's length, then multiply by 2. $\frac{2}{\|\mathbf{a} \times \mathbf{b}\|} \mathbf{a} \times \mathbf{b}$.
- **c.** The vector projection of **b** onto **a**. $\mathbf{a} \cdot \mathbf{b}$

That's
$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^2} \mathbf{a}.$$

d. A vector with the length of **b** in the direction of

Divide **a** by its length, then multiply by the length of **b** to get $\frac{\|\mathbf{b}\|}{\|\mathbf{a}\|}$ **a**.

- **e.** A vector orthogonal to **a** and **b** \times **c**. Take the cross product **a** \times (**b** \times **c**).
- **f.** A vector in the plane determined by \mathbf{a} and \mathbf{b} and perpendicular to \mathbf{c} .

Any vector \perp to $\mathbf{a} \times \mathbf{b}$ will lie in the plane determined by \mathbf{a} and \mathbf{b} . Therefore, $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ does the trick.

Math 131 Home Page at http://math.clarku.edu/~djoyce/ma131/