5 The Poisson process

A Poisson process is the continuous version of a Bernoulli process. In a Bernoulli process, time is discrete, and at each time unit there is a certain probability \(p \) that success occurs, the same probability at any given time, and the events at one time instant are independent of the events at other time instants.

In a Poisson process, time is continuous, and there is a certain rate \(\lambda \) of events occurring per unit time that is the same for any time interval, and events occur independently of each other. Whereas in a Bernoulli process at most one event occurs in a unit time interval, in a Poisson process any non-negative whole number of events can occur in unit time.

As in a Bernoulli process, you can ask various questions about a Poisson process, and the answers will have various distributions. If you ask how many events occur in an interval of length \(t \), then the answer will have a Poisson distribution, \(\text{Poisson}(\lambda t) \). Its probability mass function is

\[
f(x) = \frac{1}{x!} (\lambda t)^x e^{-\lambda t} \quad \text{for } x = 0, 1, \ldots.
\]

If you ask how long until the first event occurs, then the answer will have an exponential distribution, \(\text{Exponential}(\lambda) \), with probability density function

\[
f(x) = \lambda e^{-\lambda x} \quad \text{for } x \in [0, \infty).
\]

If you ask how long until the \(r \)th event, then the answer will have a gamma distribution \(\text{Gamma}(\lambda, r) \). There are a couple different ways that gamma distributions are parametrized—either in terms of \(\lambda \) and \(r \) as done here, or in terms of \(\alpha \) and \(\beta \). The connection is \(\alpha = r \), and \(\beta = 1/\lambda \), which is the expected time to the first event in a Poisson process. The probability density function for a gamma distribution is

\[
f(x) = \frac{x^{\alpha-1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{\Gamma(r)}
\]

for \(x \in [0, \infty) \). The mean of a gamma distribution is \(\alpha \beta = r/\lambda \) while its variance is \(\alpha \beta^2 = r/\lambda^2 \).

Our job is to get information about this parameter \(\lambda \). Using the Bayesian approach, we have a prior density function \(f(\lambda) \) on \(\lambda \). Suppose over a time interval of length \(t \) we observe \(k \) events. The posterior density function is proportional to a conditional probability times the prior density function

\[
f(\lambda | k) \propto P(k \mid \lambda) f(\lambda).
\]

Now, \(k \) and \(t \) are constants, so

\[
P(k \mid \lambda) = P(k \text{ successes in time } t \mid \lambda) = \frac{1}{k!} (\lambda t)^k e^{-\lambda t} \propto \lambda^k e^{-\lambda t}
\]

Therefore, we have the following proportionality relating the posterior density function to the prior density function

\[
f(\lambda | k) \propto \lambda^k e^{-\lambda t} f(\lambda).
\]

Finding a family of conjugate priors. Again, we have the problem of deciding on what the prior density functions \(f(\lambda) \) should be. Let’s take one that seems to be natural and see what family of distributions it leads to. We know \(\lambda \) is some positive value, so we need a distribution on \((0, \infty) \). The exponential distributions are common distributions defined on \((0, \infty) \), so let’s take the simplest one, with density

\[
f(\lambda) = e^{-\lambda}
\]
for $\lambda \geq 0$. Then

$$f(\lambda \mid k) \propto \lambda^k e^{-\lambda t} e^{-\lambda} = \lambda^k e^{-\lambda(t+1)}.$$

That makes the posterior distribution $f(\lambda \mid k)$ a gamma distribution $\text{Gamma}(\lambda, r) = \text{Gamma}(t + 1, k + 1)$ distribution since a $\text{Gamma}(\lambda, r)$ distribution has the density function

$$f(x) = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{\Gamma(r)} \propto x^{r-1} e^{-\lambda x}.$$

We have a little notational problem right now since we’re using the symbol λ in two ways. First, it’s the parameter to the Poisson process with a distribution; second, it’s one of the two parameters of that distribution. From now on, I’ll decorate the second use with subscripts somehow.

In this paragraph we have found that if λ had a prior distribution which was exponential, which in fact is a special case of a gamma distribution $\text{Gamma}(1, 1)$, then the posterior distribution was also a gamma distribution $\text{Gamma}(t + 1, k + 1)$.

More generally, the prior distribution can be any gamma distribution $\text{Gamma}(\lambda_0, r_0)$. Then if k successes are observed in time t, the posterior distribution will also be a gamma distribution, namely, $\text{Gamma}(\lambda_0 + t, r_0 + k)$. Essentially, the first coordinate keeps track of the total elapsed time while the second keeps track of the number of events.

Thus, a family of conjugate priors for the Poisson process parameter λ is the family of gamma distributions.

Selecting the prior distribution. How do you choose the right prior out of the family $\text{Gamma}(\lambda_0, r_0)$, that is, what do you choose for λ_0 and r_0?

One possibility is that you have a prior notion for the mean μ and variance σ^2 of λ. The mean for a $\text{Gamma}(\lambda_0, r_0)$ distribution is $\mu = r_0/\lambda_0$ and its variance is $\sigma^2 = r_0/\lambda_0^2$. These two equations can be solved for r_0 and λ_0 to give

$$r_0 = \frac{\mu^2}{\sigma^2} \quad \text{and} \quad \lambda_0 = \frac{\mu}{\sigma^2}.$$

So, for example, you think that the rate of events λ has a mean $\mu = 2$ and a standard deviation of $\sigma = 0.25$. Then $r_0 = 100$, and $\lambda_0 = 50$, the equivalent of observing 100 observations in 50 time units. The density of $\text{Gamma}(100, 50)$ is graphed below.

![Gamma Density Graph](image)

But what if you don’t have any prior information? What’s a good know-nothing prior? That’s like saying that we’ve had no successes in no time. That suggests taking $\text{Gamma}(0, 0)$ as the prior on λ. Now $\text{Gamma}(\lambda, r)$ describes a gamma distribution only when $\lambda > 0$ and $r > 0$, so $\text{Gamma}(0, 0)$ is only a formal symbol. Nonetheless, as soon as we make an observation of k events in time t, with k at least 1, we can use the rule developed above to update it to $\text{Gamma}(t, k)$ which is an actual distribution.

A point estimator for λ. As mentioned above, the mean of a distribution on a parameter is a commonly taken as a point estimator for that parameter. Let the prior distribution for λ be $\text{Gamma}(\lambda_0, r_0)$. Then the prior estimator for λ is $\mu_\lambda = \frac{r_0}{\lambda_0}$. After an observation x with k events in time t, the posterior distribution will be $\text{Gamma}(\lambda_0 + t, r_0 + k)$, so the posterior estimator for λ is $\mu_{\lambda|x} = \frac{r_0 + k}{\lambda_0 + t}$. If we took the prior to be
the no-nothing prior of $\text{Gamma}(0, 0)$, that implies that posterior estimator for λ is just k/t, the rate of observed occurrences.

Math 217 Home Page at

http://math.clarku.edu/~djoyce/ma217/