
The Poisson process
Math 217 Probability and Statistics

Prof. D. Joyce, Fall 2014

Poisson processes. In a Poisson process, things happen occur uniformly randomly over
time. We’ve used the word “event” to mean one thing so far, namely a subset of a sample
space, but we’ll also use it for each occurrence that occurs in a Poisson process.

An example of random events over time is radioactive decay. Suppose we have a mass of
some radioactive substance. A Geiger counter can listen to decays of this substance, and it
sounds like random clicks. Each event is the decay of a particular atom that can be detected
by a Geiger counter.

We’ll use one parameter for Poisson process, λ, the rate of events per unit time. As usual,
we’ll use the variable t for time.

The events in a Poisson process are not regularly spaced over time but random in some way.
Unlike the Bernoulli process in which time is discrete, the Poisson process uses continuous
time. There will be a few probability distributions related to the Poisson process analogous
to those associated to the Bernoulli distribution.

• The Poisson distribution. It gives the number of events in unit time. Although the
rate of events per unit time is λ, in any unit time interval there be some particular
number 0, 1, 2, etc. The probability that there are n events in unit time will depend
on the parameter λ. This is a discrete distribution. This is analogous to the binomial
distribution for a Bernoulli process.

• The exponential distribution. This specifies the time until the next event. It’s a con-
tinuous distribution analogous to the geometric distribution for a Bernoulli process.

• The gamma distribution. It specifies the time until the rth event. It’s also a continuous
distribution, and it’s analogous to the negative binomial distribution for a Bernoulli
process.

• The beta distribution. In a Poisson process, if α + β events occur in a time interval,
then the fraction of that interval until the αth event occurs has a continuous distribution
called the beta distribution. It’s not quite analogous to the hypergeometric distribution
for a Bernoulli process; the assumption is analogous, but the question is different.

We’ll analyze the Poisson and exponential distributions today.

Axioms for the Poisson process. Poisson analyzed this process by means of axioms.
We’ll do the same thing. We’ll make assumptions that we reflect some simple properties that
we expect the process to have, then derive the above distributions from those assumptions.
There are three axioms.
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1. The numbers of events in two nonoverlapping regions are independent.

2. The probability of an event occurring in an interval [a, a + h] of short length h is
approximately proportional to h, with proportionality ratio λ, called the rate of events.
More precisely,

lim
h→0

P (an event in [a, a+ h])

h
= λ.

3. The probability of two events occurring in a short interval [t, t+h] is much smaller than
the probability of one event. More precisely,

lim
h→0

P (two or more events in [a, a+ h])

P (an event in [a, a+ h])
= 0.

Development from the axioms. We’ll use these axioms to develop various related prob-
ability distributions. Let’s use the notation P0(t) to stand for the probability that no events
take place in an interval of length t. We’ll figure out the derivative P ′0 in terms of P0.

First, note that
P0(t+ h) = P0(t)P0(h).

That’s because if there are no events in the interval [0, t + h], then there are none in the
two intervals [0, t] and [t, t + h], and since those are nonoverlapping regions, by axiom 1 the
probabilities are independent, and so multiply. Therefore,

P ′0(t) = lim
h→0

P0(t+ h) − P0(t)

h

= lim
h→0

P0(t)P0(h) − P0(t)

h

= P0(t) lim
h→0

P0(h) − 1

h

Let’s pause for a moment. The probability P0(h) that no events occur in [t, t + h] equals
1 − P (at least one event in [t, t+ h]). Therefore

P ′0(t) = P0(t) lim
h→0

−P (at least one event in [t, t+ h])

h

By axiom 2, that last limit is equal to λ. Now we have the equation

P ′0(t) = −λP0(t)

which is a differential equation. In fact, it’s the exponential differential equation, perhaps the
most important differential equation there is. You’ve probably seen it in the form y′ = ky
and you know its general solution is y = Aekt. Translating that into the current notation,
P ′0(t) = −λP0(t) has the general solution P0(t) = Ae−λt. Since we know that P0(0) = 1,
therefore the constant A is equal to 1. We’ve derived from the axioms this result:

P0(t) = e−λt.
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Next, let P1(t) be the probability that exactly one event takes place in an interval of
length t. Then

P ′1(t) = lim
h→0

P1(t+ h) − P1(t)

h

= lim
h→0

P1(t)P0(h) + P0(t)P1(h) − P1(t)

h

= lim
h→0

P1(t)P0(h) − P1(t)

h
+ lim

h→0

P0(t)P1(h)

h

= P1(t) lim
h→0

P0(h) − 1

h
+ P0(t) lim

h→0

P1(h)

h
= −λP1(t) + λP0(t).

Note that axiom 3 was used in the last equation. We now have the differential equation

P ′1(t) = −λP1(t) + λe−λt.

That’s not such an elementary equation as the first one, but it’s what’s called a linear dif-
ferential equation, and it can be solved by elementary methods. Along with the initial value
P1(0) = 0, there’s a unique solution which is

P1(t) = λte−t.

In general, if we let Pn(t) be the probability that exactly n events take place in an interval
of length t, we can derive a differential equation

P ′n(t) = −λPn(t) + λPn−1(t)

which has the solution

Pn(t) =
(λt)n

n!
e−λt.

This is the Poisson distribution. If X is the number of events in an interval of length t,
then

P (X=n) =
(λt)n

n!
e−λt.

The exponential distribution. We’ve already studied the exponential distribution, but
now we can justify the claims we made for it. Let T be the time of the first event after t = 0.
Then T is what we’ve called the exponential distribution. It’s very closely related to the
function P0(t) we found above. Let FT (t) denote the cumulative distribution function for the
exponential distribution. Then

FT (t) = P (T ≤ t)

= 1 − P (T ≥ t)

= 1 − P0(t) = 1 − e−λt

That gives us the justification for the formula we’ve been using for the exponential distribu-
tion. Differentiating it gives us the density function

fT (t) = λe−λt.
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The exponential density function is

f(t) =

{
λe−λt for t > 0

0 otherwise.

We can find the corresponding cumulative distribution function by integration.

(t) =

∫ t

−∞
f(x) dx =

∫ t

0

λe−λx dx = − e−λx
∣∣∣∣t
0

= − e−λt + e−λ0 = 1 − e−λt

Math 217 Home Page at http://math.clarku.edu/~djoyce/ma217/
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