Math 218, Mathematical Statistics
D Joyce, Spring 2016

Chap. 6, p. 229, exercises 1, 2ab, 5, 7, 11, 13a, 14, 15ab.

Selected answers.

1. State whether each boldfaced number is a parameter or a statistic.

 These take a little bit of interpretation. You need to see what the stated sample is a sample of. If the number depends only on the total population, it’s a parameter, but if it depends on the sample, it’s a statistic.

 The sample is from a population of size 1000. The number 0 of defective fuses in a sample of size n = 25 is a statistic. The number 3 of defective fuses in the whole population is a parameter of the distribution.

 b. The speed of 100 vehicles was monitored. It was found that 63 vehicles exceeded the posted speed limit.

 The sample has size n = 100 of some unknown sized population. The number 63 is a statistic of that sample.

 c. A telephone poll of registered voters one week before a statewide election showed that 48% would vote for the current governor, who was running for reelection. The final election returns showed that the incumbent won with 52% of the votes cast.

 The 48% depends on the sample, so it’s a statistic of the sample. The 52% depends on the entire voting population, so it’s a paramater.

5. Suppose we have n independent Bernoulli trials with true success probability p. Consider two estimators of p:

 \(\hat{p}_1 = \bar{p} \) where \(\bar{p} \) is the sample proportion of successes and

 \(\hat{p}_2 = \frac{1}{2} \), a fixed constant.

 a. Find the expected value and bias of each estimator.

 \[E(\hat{p}_1) = E(\frac{1}{n}(X_1 + \cdots + X_n)) = \frac{1}{n}(p + \cdots + p) = p. \]

 \[E(\hat{p}_2) = E(\frac{1}{2}) = \frac{1}{2}. \]

 Bias(\(\hat{p}_1 \)) = E(\(\hat{p}_1 \)) - p = p - p = 0. It’s unbiased.

 Bias(\(\hat{p}_2 \)) = E(\(\hat{p}_2 \)) - p = \frac{1}{2} - p. It’s biased unless p = \frac{1}{2}.

 b. Find the variance of each estimator. Which estimator has the lower variance?

 \[\text{Var}(\hat{p}_1) = \text{Var}(\frac{1}{n}(X_1 + \cdots + X_n)) \]

 \[= \frac{1}{n^2} \text{Var}(X_1 + \cdots + X_n) \]

 \[= \frac{1}{n^2} (\text{Var}(X_1) + \cdots + \text{Var}(X_n)) \]

 \[= \frac{1}{n^2} (pq + \cdots + pq) \]

 \[= \frac{pq}{n} \]

 \[\text{Var}(\hat{p}_2) = \text{Var}(\frac{1}{2}) = 0. \]

 Therefore, \(\hat{p}_2 \) has the smaller variance.

 c. Find the MSE (mean squared error) of each estimator and compare them by plotting against the true p. Use n = 4. Comment on the comparison.

 MSE(\(\hat{p}_1 \)) = Var(\(\hat{p}_1 \)) + (Bias(\(\hat{p}_1 \)))^2 = \frac{1}{n}pq + 0 = \frac{1}{n}pq = \frac{1}{4}p(1 - p).

 MSE(\(\hat{p}_2 \)) = Var(\(\hat{p}_2 \)) + (Bias(\(\hat{p}_2 \)))^2 = 0 + (\frac{1}{2} - p)^2 = (\frac{1}{2} - p)^2.

 When n = 4, MSE(\(\hat{p}_1 \)) = \frac{1}{4}p(1 - p), while MSE(\(\hat{p}_2 \)) = (\frac{1}{2} - p)^2.

 The graph of MSE(\(\hat{p}_1 \)) is a parabola passing through the points (0, 0), (\(\frac{1}{2} \), 0), and (1, 0).

 The graph of MSE(\(\hat{p}_2 \)) is also a parabola, but it passes through the points (0, \(\frac{1}{2} \)), (\(\frac{1}{2} \), 0), and (1, \(\frac{1}{4} \)).

 Thus, for most values of p, \(\hat{p}_1 \) has a smaller MSE, but if p happens to be near \(\frac{1}{2} \), then \(\hat{p}_2 \) has a smaller MSE.

11. Consider the probability

 \[P(-1.645 \leq Z = \frac{X - \mu}{\sigma/\sqrt{n}} \leq +1.645) \]

 where \(X \) is the sample mean of a random sample of size n drawn from a normal distribution with mean \(\mu \) and variance \(\sigma^2 \).

 a. Use this statement to find a confidence interval for \(\mu \).

 What is the confidence level of this confidence interval?

 The statistic \(Z = \frac{X - \mu}{\sigma/\sqrt{n}} \) is a standard normal distribution assuming \(X \) has a normal distribution as stated. From the table for a standard normal distribution, \(\Phi(1.645) = 0.95 \), so \(P(-1.645 \leq Z \leq +1.645) = 0.90 \). Therefore, the confidence level here is 90%. The interval \([-1.645, 1.645]\) is for \(Z = \frac{X - \mu}{\sigma/\sqrt{n}} \). So, for \(\mu \), the interval is

 \[\left[\frac{X - 1.645 \sigma}{\sqrt{n}}, \frac{X + 1.645 \sigma}{\sqrt{n}} \right]. \]

 b. A sample of n = 100 is taken from a normal population with \(\sigma = 10 \). The sample mean is 30. Calculate the confidence interval for \(\mu \) using the result from part a.

 Since n = 100, \(X = 30 \) and \(\sigma = 10 \), the above interval is

 \[\left[30 - 1.645 \frac{10}{\sqrt{100}}, 30 + 1.645 \frac{10}{\sqrt{100}} \right], \]

 which simplifies to [28.355, 31.645].

 c. What is the probability that \(\mu \) is included in the confidence interval calculated in part b?

 Although \(P(X - 1.645 \leq \mu \leq X + 1.645) = 0.90 \), the probability \(P(28.355 \leq \mu \leq 31.645) \) is either equal to 0 or to 1 depending on whether the constant \(\mu \) lies in the interval or not.
13a. Suppose that 100 random samples of size 9 are generated from a normal distribution with mean \(\mu = 70 \) and variance \(\sigma^2 = 3^2 \) and the associated 95\% confidence interval is calculated for each sample.

How many of these 100 intervals would you expect to contain the true \(\mu = 70 \)?

That would be 95\% of the 100 intervals, that is, 95 intervals, to contain \(\mu \).

14. A random sample of size 25 from a normal distribution with mean \(\mu \) and variance \(\sigma^2 = 6^2 \) has a mean of \(\bar{x} = 16.3 \).

a. Calculate confidence intervals for \(\mu \) for three levels of confidence: 80\%, 90\%, and 99\%. How do the confidence widths change?

The widths of the interval will increase as the confidence level increases. The interval for confidence level \(1 - \alpha \) is

\[
\left[\bar{x} - \frac{z_{\alpha/2} \sigma}{\sqrt{n}}, \bar{x} + \frac{z_{\alpha/2} \sigma}{\sqrt{n}} \right].
\]

For an 80\% confidence level, \(\alpha/2 = 0.1 \) so, by the tables, \(z_{\alpha/2} = 1.282 \), so \(z_{\alpha/2} \sigma / \sqrt{n} = 1.538 \), and therefore, the confidence interval is

\[
[16.3 - 1.538, 16.3 + 1.538] = [14.76, 17.84].
\]

For an 90\% confidence level, \(\alpha/2 = 0.05 \) so \(z_{\alpha/2} = 1.645 \), \(z_{\alpha/2} \sigma / \sqrt{n} = 1.974 \), and the confidence interval is

\[
[16.3 - 1.974, 16.3 + 1.974] = [14.33, 18.27].
\]

For an 99\% confidence level, \(\alpha/2 = 0.005 \) so \(z_{\alpha/2} = 2.575 \), \(z_{\alpha/2} \sigma / \sqrt{n} = 3.09 \), and the confidence interval is

\[
[16.3 - 3.09, 16.3 + 3.09] = [13.21, 19.39].
\]

b. How would the confidence interval widths change if \(n \) is increased to 100?

Since \(n \) is increased by a factor of 4 then \(\sqrt{n} \) will be increased by a factor of 2, therefore, the width of the interval will be halved.

15. We want to estimate the mean output voltage of a batch of electrical power supply units. A random sample of 10 units is tested, and the sample mean is calculated to be 110.5 volts. Assume that the measurements are normally distributed with \(\sigma = 3 \) volts.

a. Calculate a two-sided 95\% confidence interval on the mean output voltage. Suppose that the specifications on the true mean output voltage are 100 \(\pm \) 2.5 volts. Explain how the confidence interval can be used to check whether these specifications are met.

The two-sided interval for confidence level 0.95 is

\[
\left[\bar{x} - z_{0.025} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{0.025} \frac{\sigma}{\sqrt{n}} \right].
\]

With \(n = 10, \sigma = 3, \) and \(\bar{x} = 110.5, \) and since \(z_{0.025} = 1.96, \) this interval is

\[
\left[\bar{x} - 1.96 \frac{3}{\sqrt{10}}, \bar{x} + 1.96 \frac{3}{\sqrt{10}} \right] = [108.6, 112.4].
\]

This is a subinterval of 110 \(\pm \) 2.5, so at the 95\% confidence level, the specifications are met.

b. Suppose that only the lower specification is applicable, since the main concern is that too low a voltage may cause malfunction of the equipment. Calculate an appropriate one-sided 95\% confidence bound on the mean output voltage and explain how it can be used to check whether the lower specification limit is met.

The interval for confidence level \(1 - \alpha \) is

\[
\left(\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty \right),
\]

so this confidence interval is

\[
[110.5 - 1.645 \frac{3}{\sqrt{10}}, \infty) = [108.9, \infty).
\]

Since 109.9 is greater than the lower limit 107.5, the specification is met.

Note how this one-sided specification is more lenient than the two-sided one.

Math 218 Home Page at

http://math.clarku.edu/~djoyce/ma218/