Math 125 Modern Algebra
First Test Anaswers
March 2017

Scale. $\quad 80-100 \mathrm{~A}, 60-79 \mathrm{~B}, 40-59 \mathrm{C}$. Median 72.

1. [20] On fields. Recall the definition of a field. A field F consists of
2. a set, also denoted F and called the underlying set of the field;
3. a binary operation $+: F \times F \rightarrow F$ called addition, which maps an ordered pair $(x, y) \in F \times F$ to its sum denoted $x+y$;
4. another binary operation •: $F \times F \rightarrow F$ called multiplication, which maps an ordered pair $(x, y) \in F \times F$ to its product denoted $x \cdot y$, or more simply just $x y$; such that
5. addition is commutative, that is, for all elements x and $y, x+y=y+x ;$
6. multiplication is commutative, that is, for all elements x and $y, x y=y x ;$
7. addition is associative, that is, for all elements x, y, and $z,(x+y)+z=x+(y+z)$;
8. multiplication is associative, that is, for all elements x, y, and $z,(x y) z=x(y z)$;
9. there is an additive identity, an element of F denoted 0 , such that for all elements $x, 0+x=x$;
10. there is a multiplicative identity, an element of F denoted 1 , such that for all elements $x, 1 x=x$;
11. there are additive inverses, that is, for each element x, there exists an element y such that $x+y=0$; such a y is called the negation of x;
12. there are multiplicative inverses of nonzero elements, that is, for each nonzero element x, there exists an element y such that $x y=1$; such a y is called a reciprocal of x;
13. multiplication distributes over addition, that is, for all elements x, y, and $z, x(y+z)=x y+x z$; and
14. $0 \neq 1$.

Carefully prove that 0 times any element in a field is $0,0 x=$ 0 , using only the definition above and no other properties of a field (unless you prove them as well). Justify every statement and equation. Write full sentences.

There are many possible proofs. Here is one.

Let x be an element of the field. Since 0 is the additive identity (8), therefore $0+0=0$. Multiply that equation by x. Then $x(0+0)=x 0$. Since multiplication distributes over addition (12), therefore $x 0+x 0=x 0$. Let y be the additive inverse of $x 0$ (10) so that $x 0+y=0$. Add y to each side of the equation $x 0+x 0=x 0$. Then $(x 0+x 0)+y=x 0+y$. Since addition is associative (6), therefore $x 0+(x 0+y)=x 0+y$. But $x 0+y=0$, so $x 0+0=0$. And since 0 is the additive identity (8 again), therefore $x 0=0$. Finally, multiplication is commutative (5), so $0 x=0$.
Q.E.D.
2. [15; 5 points each part] On rings.
a. Give an example of a ring R and two elements x and y in R, neither of which is 0 , but the product $x y$ of the two elements is 0 .

There are many. One that was mentioned in class is the ring \mathbf{Z}_{6} where $x=2$ and $y=3$.
b. Give an example of a ring of characteristic 0 .

Some examples: Z, Q, R.
c. Give an example of a subring of the field \mathbf{R} of real numbers other than \mathbf{R} itself.
\mathbf{Z} and \mathbf{Q} are both subrings of \mathbf{R}.
3. $[20 ; 5$ points each part] On groups. For each of the following, state if it is a group or not. If not, explain why not, but if so, you don't have to give a reason why.
a. The set $\{1,-1, i,-i\}$ of four complex numbers under addition.

It is not a group under addition. It doesn't have 0 . Also, it's not closed under addition.
b. The set $\{1,-1, i,-i\}$ of four complex numbers under multiplication.

It is a group. It's a cyclic group of four elements.
c. The set of six functions including $f(x)=\frac{1}{x}, g(x)=1-x$, $h(x)=\frac{1}{1-x}, i(x)=x, k(x)=\frac{x-1}{x}$, and $\ell(x)=\frac{x}{x-1}$ under composition.

It is a group. This is one of the examples discussed in class.
d. The set of 2×2 matrices in $M_{2}(\mathbf{R})$ with positive determinants under matrix multiplication.

It is a group. The identity matrix is in this set, and it's closed under multiplication and inverses. It's a subgroup of the general linear group $G L(2, R)$
4. [16; 8 points each part] On number theory.
a. Draw a Hasse diagram of the divisors of 30 .

There are eight divisors of 30. The Hasse diagram has 1 at the bottom; 2, 3, and 5 above $1 ; 6$ above 2 and $3 ; 10$ above 2 and $5 ; 15$ above 3 and 5 ; and 30 at the top.
b. Use the Euclidean algorithm to show that the greatest common divisor of 105 and 154 is 7 . Show your work.

Since $154-105=49$, therefore $\operatorname{GCD}(105,154)$ is equal to $\operatorname{GCD}(105,49)$. Subtracting 49 twice from 105 gives 7 , so $\operatorname{GCD}(105,49)$ is equal to $\operatorname{GCD}(7,49)$. Since 7 divides 49 , therefore 7 is the greatest common divisor.
5. [15] On ordered fields. Recall that an order on a field F is determined by a subset P whose elements are called positive such that (1) F is partitioned into three parts: P, $\{0\}$, and $N=\{x \in F \mid x \in P\},(2)$ the sum of two positive elements is positive; and (3) the product of two positive elements is positive.
Explain in your own words why a field of prime characteristic p cannot have an order of this kind.

Suppose there were an order of this kind for a field prime characteristic p. Since 1 is positive, and positive elements are closed under addition, therefore $1+1+\cdots+1$ is positive. But when there are p terms in the sum, that sum is equal to 0 which is not positive. That contradicts condition (1). Therefore there is no such order.
6. [16; 8 points each part] On finite fields. We have had examples and exercises on finite fields. The Galois field $G F(2)$ is the ring \mathbf{Z}_{2} of integers modulo 2 . In this exercise you'll construct the Galois field $G F(8)$ as an extension of \mathbf{Z}_{2}.
a. Find at least one of the following cubic polynomials that has no root in $\mathbf{Z}_{2}: x^{3}, x^{3}+1, x^{3}+x, x^{3}+x+1, x^{3}+x^{2}$, $x^{3}+x^{2}+1, x^{3}+x^{2}+x, x^{3}+x^{2}+x+1$. That is to say, if $f(x)$ is the polynomial, its value at neither of the two elements of \mathbf{Z}_{2} is equal to 0 .

0 will be a root of any of those polynomials that don't have the constant 1 . That leaves the four polynomials that do have the constant 1 . 1 will be a root of any polynomial with 2 or 4 terms. That leaves two polynomials: $x^{3}+x+1$ and $x^{3}+x^{2}+1$. Either one will do.
Now let $f(x)$ be that polynomial you found in part a. Let F be the 3-dimensional vector space over \mathbf{Z}_{2} of 8 elements where each element is written as $a x^{2}+b x+c$ with a, b, and c each in \mathbf{Z}_{2}. Define multiplication on F so that $f(x)=0$. (So, for instance, if $f(x)=x^{3}+x^{2}+x+1$, then $x^{3}=-x^{2}-x-1$.)
b. With your choice of $f(x), F$ will be a field where every nonzero element has a reciprocal. Determine the reciprocal of x in F, that is, find some polynomial whose product with x is equal to 1 modulo $f(x)$.

Let $f(x)=x^{3}+x+1$. Then $x^{3}+x+1=0$ which can be rewritten $x^{3}+x=1$. Divide by x to conclude $\frac{1}{x}=x^{2}+1$.
(In fact the seven nonzero elements of $G F(8)$ form a cyclic group under multiplication.)

n	0	1	2	3	4	5	6
x^{n}	1	x	x^{2}	$x+1$	$x^{2}+x$	$x^{2}+x+1$	$x^{2}+1$

