Math 125 Modern Algebra
Second Test Anaswers
November 2017

Scale. $90-104$ A. 70-89 B. 50-69 C. Median 91.

1. $[20 ; 10$ points each part $]$ Recall that a commutative ring satisfies the cancellation law if whenever $x y=x z$ and $x \neq 0$, then $y=z$. Recall that a commutative ring has no zerodivisors if whenever $x y=0$, then either $x=0$ or $y=0$.

In parts a and byou'll prove the following theorem: A commutative ring satisfies the cancellation law if and only if it has no zero-divisors.
a. Prove that if a commutative ring R satisfies the cancellation law, then it has no zero-divisors.

There are, of course, many proofs. Here's one.
Proof. Suppose the ring satisfies the cancellation law. Let x be a nonzero element in the ring. If $x y=0$, then $x y=x 0$, so by that cancellation law, $y=0$. Then x can't be a zerodivisor. Thus the ring has no zero-divisors. Q.E.D.
b. Prove that if a commutative ring R has no zero-divisors, then it satisfies the cancellation law.

Proof. Suppose that the ring has no zero-divisors. We'll show it satisfies the cancellation law. If $x \neq 0$ and $x y=x z$, then $x(y-z)=0$, and since x is not a zero divisor, therefore $y-z=0$, so $y=z$. Thus the ring satisfies the cancellation law.
Q.E.D.
2. [16] The Chinese Remainder Theorem states that if k and m are relatively prime and $n=k m$, then $\mathbf{Z}_{n} \cong \mathbf{Z}_{k} \times \mathbf{Z}_{n}$ where an element $[x]_{n}$ corresponds to the pair $\left([x]_{k},[x]_{n}\right)$. In other words, the pair of simultaneous congruences

$$
\begin{aligned}
& x \equiv a(\bmod k) \\
& x \equiv b(\bmod m)
\end{aligned}
$$

has a unique solution for x modulo n.
Solve this pair of simultaneous congruences

$$
\begin{array}{r}
x \equiv 5(\bmod 20) \\
x \equiv 20(\bmod 21)
\end{array}
$$

for x modulo $20 \cdot 21=420$. Use whatever method you like, but show your work.

Here's Brahmagupta's method using modern algebra. We're looking for an x such that

$$
x=20 s+5=21 t+20
$$

So we need s and t so that

$$
20 s=21 t+15
$$

Rewrite the equation as $20 s=20 t+t+15$, then $20(s-t)=$ $t+15$, and introduce another variable $u=s-t$ so the equation becomes $20 u=t+15$. That's the first step in the extended Euclidean algorithm. You could continue in this way, but you can also find a solution to $20 u=t+15$ by inspection, namely $u=1$ and $t=5$. Therefore $x=$ $21 t+20=21 \cdot 5+20=125$.

There are many variants of Brahmagupta's algorithm. There's also Qin Jiushao's algorithm which works fine.

Also, since the numbers are fairly small, you could actually just search for a solution. Since $x \equiv 5(\bmod 20)$, therefore the candidates for x are $5,25,45,65,85,105,125$, etc. Of these, the first one that satisfies $x \equiv 20(\bmod 21)$ is 125 .
3. [16] Recall that we defined a Boolean ring as a ring in which every element is idempotent $x^{2}=x$, and we proved that Boolean rings are commutative and that $x+x=0$ holds in a Boolean ring.

Boolean rings correspond to Boolean algebras where multiplication $x y$ in the Boolean ring corresponds to intersection $x \cap y$ in a Boolean algebra, and $x+y+x y$ in the Boolean ring corresponds to union $x \cup y$ in a Boolean algebra.
Since in a Boolean algebra, union distributes over intersection $x \cup(y \cap z)=(x \cap y) \cup(x \cap z)$, therefore the corresponding equation in Boolean rings must also hold. That corresponding equation is

$$
x+y z+x y z=(x+y+x y)(x+z+x z)
$$

Using those facts about Boolean rings mentioned in the first paragraph above, prove that that equation holds in all Boolean rings.

Expanding the right side of the equation, we get

$$
\begin{aligned}
& (x+y+x y)(x+z+x z) \\
= & x^{2}+x z+x^{2} z+x y+y z+x y z+x^{2} y+x y z+x^{2} y z \\
\text { but } & x^{2}=x \text { so that } \\
= & x+x z+x z+x y+y z+x y z+x y+x y z+x y z
\end{aligned}
$$

There are several pairs of identical terms, so they cancel making that

$$
=x+y z+x y z
$$

which is the left side of the equation.
4. [16] Determine the kernel of the ring homomorphism $f: \mathbf{Z}_{20} \rightarrow \mathbf{Z}_{5}$ where $f\left([x]_{20}\right)=[x]_{5}$. It is enough to list the elements in the kernel.

What elements of \mathbf{Z}_{20} are sent to $[0]_{5}$ in \mathbf{Z}_{5} ? Any multiple of 5 is 0 in \mathbf{Z}_{5}, so the elements $[0]_{20},[5]_{20},[10]_{20}$, and $[15]_{20}$ are in the kernel of f.

Typically, we don't write elements of \mathbf{Z}_{n} so formally as congruence classes, so an answer of $0,5,10$, and 15 is fine.
5. [16] Let R be the polynomial ring $\mathbf{Q}[x]$, and let I be the principal ideal $\left(x^{2}-3\right)$ generated by the polynomial $x^{2}-3$. In other words, the elements of I are polynomials of the form $\left(x^{2}-3\right) f(x)$ where $f(x)$ is any polynomial in R.

Describe in your own words the quotient ring $R / I=$ $\mathbf{Q}[x] /\left(x^{2}-3\right)$. Is it a field?

It's the rational number field with $\sqrt{3}$ adjoined, usually written $\mathbf{Q}[\sqrt{3}]$ or $\mathbf{Q}(\sqrt{3})$. It's a field since $x^{2}-3$ has no roots in \mathbf{Q}.

Note that $\mathbf{Q}[x] /\left(x^{2}-4\right)$ is not a field, so any argument that $\mathbf{Q}[x] /\left(x^{2}-3\right)$ is a field must explicitly consider the polynomial $x^{2}-3$.
6. [20; 4 points each part] True/false. For each sentence write the whole word "true" or the whole word "false". If it's not clear whether it should be considered true or false, you may explain in a sentence if you prefer.
a. The natural numbers $\mathbf{N}=\{0,1,2, \ldots\}$ is a ring. False. It doesn't have negation.
b. Every integral domain is a subring of a field. True. We showed that every integral domain can be extended to its field of fractions.
c. The product of two fields is a field. False. It never is. For example, $(1,0)$ doesn't have a reciprocal.
d. If a ring is a finite integral domain, then it is a field. True. There are no finite integral domains that aren't fields.
e. A morphism $f: A \rightarrow B$ in a category is defined to be an isomorphism if there exists another morphism $g: B \rightarrow A$, called its inverse, such that $f \circ g=1_{A}$. False. It is necessary that $f \circ g=1_{B}$ and $g \circ f=1_{A}$.

