Math 125 Modern Algebra Second Test Anaswers November 2017

Scale. 90–104 A. 70–89 B. 50-69 C. Median 91.

1. [20; 10 points each part] Recall that a commutative ring satisfies the cancellation law if whenever xy = xz and $x \neq 0$, then y = z. Recall that a commutative ring has no zerodivisors if whenever xy = 0, then either x = 0 or y = 0.

In parts **a** and **b** you'll prove the following theorem: A commutative ring satisfies the cancellation law if and only if it has no zero-divisors.

a. Prove that if a commutative ring R satisfies the cancellation law, then it has no zero-divisors.

There are, of course, many proofs. Here's one.

Proof. Suppose the ring satisfies the cancellation law. Let x be a nonzero element in the ring. If xy = 0, then xy = x0, so by that cancellation law, y = 0. Then x can't be a zerodivisor. Thus the ring has no zero-divisors. Q.E.D.

b. Prove that if a commutative ring R has no zero-divisors, then it satisfies the cancellation law.

Proof. Suppose that the ring has no zero-divisors. We'll show it satisfies the cancellation law. If $x \neq 0$ and xy = xz, then x(y-z) = 0, and since x is not a zero divisor, therefore y - z = 0, so y = z. Thus the ring satisfies the cancellation law. Q.E.D.

2. [16] The Chinese Remainder Theorem states that if k and m are relatively prime and n = km, then $\mathbf{Z}_n \cong \mathbf{Z}_k \times \mathbf{Z}_n$ where an element $[x]_n$ corresponds to the pair $([x]_k, [x]_n)$. In other words, the pair of simultaneous congruences

$$x \equiv a \pmod{k}$$
$$x \equiv b \pmod{m}$$

has a unique solution for x modulo n.

Solve this pair of simultaneous congruences

$$x \equiv 5 \pmod{20}$$
$$x \equiv 20 \pmod{21}$$

for x modulo $20 \cdot 21 = 420$. Use whatever method you like, but show your work.

Here's Brahmagupta's method using modern algebra. We're looking for an x such that

$$x = 20s + 5 = 21t + 20.$$

So we need s and t so that

$$20s = 21t + 15.$$

Rewrite the equation as 20s = 20t + t + 15, then 20(s - t) = t + 15, and introduce another variable u = s - t so the equation becomes 20u = t + 15. That's the first step in the extended Euclidean algorithm. You could continue in this way, but you can also find a solution to 20u = t + 15 by inspection, namely u = 1 and t = 5. Therefore $x = 21t + 20 = 21 \cdot 5 + 20 = 125$.

There are many variants of Brahmagupta's algorithm. There's also Qin Jiushao's algorithm which works fine.

Also, since the numbers are fairly small, you could actually just search for a solution. Since $x \equiv 5 \pmod{20}$, therefore the candidates for x are 5, 25, 45, 65, 85, 105, 125, etc. Of these, the first one that satisfies $x \equiv 20 \pmod{21}$ is 125.

3. [16] Recall that we defined a Boolean ring as a ring in which every element is idempotent $x^2 = x$, and we proved that Boolean rings are commutative and that x+x = 0 holds in a Boolean ring.

Boolean rings correspond to Boolean algebras where multiplication xy in the Boolean ring corresponds to intersection $x \cap y$ in a Boolean algebra, and x + y + xy in the Boolean ring corresponds to union $x \cup y$ in a Boolean algebra.

Since in a Boolean algebra, union distributes over intersection $x \cup (y \cap z) = (x \cap y) \cup (x \cap z)$, therefore the corresponding equation in Boolean rings must also hold. That corresponding equation is

$$x + yz + xyz = (x + y + xy)(x + z + xz).$$

Using those facts about Boolean rings mentioned in the first paragraph above, prove that that equation holds in all Boolean rings.

Expanding the right side of the equation, we get

$$\begin{aligned} &(x+y+xy)(x+z+xz)\\ &=x^2+xz+x^2z+xy+yz+xyz+x^2y+xyz+x^2yz\\ &\text{but }x^2=x \text{ so that} \end{aligned}$$

= x + xz + xz + xy + yz + xyz + xyz + xyz

There are several pairs of identical terms, so they cancel making that

$$= x + yz + xyz$$

which is the left side of the equation.

4. [16] Determine the kernel of the ring homomorphism $f : \mathbf{Z}_{20} \to \mathbf{Z}_5$ where $f([x]_{20}) = [x]_5$. It is enough to list the elements in the kernel.

What elements of \mathbf{Z}_{20} are sent to $[0]_5$ in \mathbf{Z}_5 ? Any multiple of 5 is 0 in \mathbf{Z}_5 , so the elements $[0]_{20}$, $[5]_{20}$, $[10]_{20}$, and $[15]_{20}$ are in the kernel of f.

Typically, we don't write elements of \mathbf{Z}_n so formally as congruence classes, so an answer of 0, 5, 10, and 15 is fine.

5. [16] Let R be the polynomial ring $\mathbf{Q}[x]$, and let I be the principal ideal $(x^2 - 3)$ generated by the polynomial $x^2 - 3$. In other words, the elements of I are polynomials of the form $(x^2 - 3)f(x)$ where f(x) is any polynomial in R.

Describe in your own words the quotient ring $R/I = \mathbf{Q}[x]/(x^2 - 3)$. Is it a field?

It's the rational number field with $\sqrt{3}$ adjoined, usually written $\mathbf{Q}[\sqrt{3}]$ or $\mathbf{Q}(\sqrt{3})$. It's a field since $x^2 - 3$ has no roots in \mathbf{Q} .

Note that $\mathbf{Q}[x]/(x^2-4)$ is not a field, so any argument that $\mathbf{Q}[x]/(x^2-3)$ is a field must explicitly consider the polynomial x^2-3 .

6. [20; 4 points each part] True/false. For each sentence write the whole word "true" or the whole word "false". If it's not clear whether it should be considered true or false, you may explain in a sentence if you prefer.

a. The natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$ is a ring. *False*. It doesn't have negation.

b. Every integral domain is a subring of a field. *True*. We showed that every integral domain can be extended to its field of fractions.

c. The product of two fields is a field. *False*. It never is. For example, (1,0) doesn't have a reciprocal.

d. If a ring is a finite integral domain, then it is a field. *True*. There are no finite integral domains that aren't fields.

e. A morphism $f: A \to B$ in a category is defined to be an *isomorphism* if there exists another morphism $g: B \to A$, called its *inverse*, such that $f \circ g = 1_A$. False. It is necessary that $f \circ g = 1_B$ and $g \circ f = 1_A$.