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42. Several properties of divisibility follow directly from
the definition just like they do with the integral domain is
Z. Prove the following properties from the above definitions.

(a). 1 divides every element.
(b). Each element divides itself.
(c). If a

∣∣b then a
∣∣bc.

(d). Divisibility is transitive.
(e). If one element divides two other elements, then it

divides both their sum and difference.
(f). Cancellation: When c 6= 0, a

∣∣b if and only if ac
∣∣bc.

(a). By the definition, 1
∣∣b means there is some c such that

1c = b. There is such a c, namely, c = b. Thus 1 divides
every element. q.e.d.

(b). b
∣∣b means there is some c such that bc = b. There is such

a c, namely, c = 1. Thus each element divides itself. q.e.d.

(c). Suppose that a
∣∣b. Then there is a d such that ad = b.

Therefore a(dc) = bc, so a
∣∣bc. Thus a

∣∣b implies a
∣∣bc. q.e.d.

(d). Suppose that a
∣∣b and b

∣∣c. Then there exists a d such
that ad = b, and there exists an e such that be = c. There-
fore a(de) = be = c, so a

∣∣c. Thus divisibility is transi-
tive. q.e.d.

(e). Suppose that a
∣∣b and a

∣∣c. Then there exists a d such
that ad = b, and there exists an e such that ae = c. There-
fore a(d + e) = b + c and a(d − e) = b − c, so a

∣∣(b + c) and

a
∣∣(b− c). Thus, iff one element divides two other elements,

then it divides both their sum and difference. q.e.d.

(f). Let c be a nonzero element in an integral domain.
First, suppose that a

∣∣b. Then ad = b for some d, so

(ac)d = bc, so ac
∣∣bc.

Next, suppose that ac
∣∣bc. Then acd = bc for some d. In

an integral domain we can cancel the c’s since c is not zero
to conclude ad = b, so a

∣∣b. q.e.d.

43. Prove that a nonzero element x is an integral domain
D is prime if and only if the principal ideal (x) is a prime
ideal.

Recall what the two statements mean.
A nonzero element x is prime when it’s not a unit and

whenever x
∣∣yz, either x

∣∣y or x
∣∣z.

The ideal (x) is a prime ideal when (1) (x) 6= D, and (2)
for all y, z ∈ D, if yz ∈ (x), then either y ∈ (x) or z ∈ (x).

Proof.
⇒: Suppose that x is prime. Then it’s not a unit so

(x) 6= (1) which means (x) 6= D. Now let yz ∈ (x). Then
x
∣∣yz. Therefore x

∣∣y or x
∣∣z. If x

∣∣y then y ∈ (x), but if x
∣∣z

then z ∈ (x). Thus either y ∈ (x) or z ∈ (x). Thus (x) is a
prime ideal.

⇐: Suppose that (x) is a prime ideal. Since (x) 6= D,
therefore x is not a unit. Now let x

∣∣yz. Then yz ∈ (x).

Therefore either y ∈ (x) or z ∈ (x). In the first case x
∣∣y,

and in the second case x
∣∣z. So either x

∣∣y or x
∣∣z. Thus x is

prime. q.e.d.
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