CLARERO

Exercises
Math 225 Modern Algebra
Fall 2017

42. Several properties of divisibility follow directly from the definition just like they do with the integral domain is Z. Prove the following properties from the above definitions.
(a). 1 divides every element.
(b). Each element divides itself.
(c). If $a \mid b$ then $a \mid b c$.
(d). Divisibility is transitive.
(e). If one element divides two other elements, then it divides both their sum and difference.
(f). Cancellation: When $c \neq 0, a \mid b$ if and only if $a c \mid b c$.
(a). By the definition, $1 \mid b$ means there is some c such that $1 c=b$. There is such a c, namely, $c=b$. Thus 1 divides every element.
Q.E.D.
(b). $b \mid b$ means there is some c such that $b c=b$. There is such a c, namely, $c=1$. Thus each element divides itself. Q.E.D. (c). Suppose that $a \mid b$. Then there is a d such that $a d=b$. Therefore $a(d c)=b c$, so $a \mid b c$. Thus $a \mid b$ implies $a \mid b c$. Q.E.D. (d). Suppose that $a \mid b$ and $b \mid c$. Then there exists a d such that $a d=b$, and there exists an e such that $b e=c$. Therefore $a(d e)=b e=c$, so $a \mid c$. Thus divisibility is transitive.
Q.E.D.
(e). Suppose that $a \mid b$ and $a \mid c$. Then there exists a d such that $a d=b$, and there exists an e such that $a e=c$. Therefore $a(d+e)=b+c$ and $a(d-e)=b-c$, so $a \mid(b+c)$ and $a \mid(b-c)$. Thus, iff one element divides two other elements, then it divides both their sum and difference. Q.E.D. (f). Let c be a nonzero element in an integral domain.

First, suppose that $a \mid b$. Then $a d=b$ for some d, so $(a c) d=b c$, so $a c \mid b c$.

Next, suppose that $a c \mid b c$. Then $a c d=b c$ for some d. In an integral domain we can cancel the c 's since c is not zero to conclude $a d=b$, so $a \mid b$. Q.E.D.
43. Prove that a nonzero element x is an integral domain D is prime if and only if the principal ideal (x) is a prime ideal.

Recall what the two statements mean.
A nonzero element x is prime when it's not a unit and whenever $x \mid y z$, either $x \mid y$ or $x \mid z$.

The ideal (x) is a prime ideal when (1) $(x) \neq D$, and (2) for all $y, z \in D$, if $y z \in(x)$, then either $y \in(x)$ or $z \in(x)$.

Proof.

\Rightarrow : Suppose that x is prime. Then it's not a unit so $(x) \neq(1)$ which means $(x) \neq D$. Now let $y z \in(x)$. Then $x \mid y z$. Therefore $x \mid y$ or $x \mid z$. If $x \mid y$ then $y \in(x)$, but if $x \mid z$ then $z \in(x)$. Thus either $y \in(x)$ or $z \in(x)$. Thus (x) is a prime ideal.
\Leftarrow : Suppose that (x) is a prime ideal. Since $(x) \neq D$, therefore x is not a unit. Now let $x \mid y z$. Then $y z \in(x)$. Therefore either $y \in(x)$ or $z \in(x)$. In the first case $x \mid y$, and in the second case $x \mid z$. So either $x \mid y$ or $x \mid z$. Thus x is prime.
Q.E.D.

Math 225 Home Page at
http://aleph0.clarku.edu/~djoyce/ma225/

