
Exercises
Math 225 Modern Algebra

Fall 2017

Formal proofs are not required for these exercises, but
convincing arguments should be supplied.

7. Prove that if f : A → B is a function between two
finite sets of the same cardinality, then the following three
conditions are equivalent: (1) f is a bijection, (2) f is an
injection, and (3) f is a surjection.

Note that (1) implies both (2) and three since a bijection
is defined as being both an injection and a surjection. What
remains to be shown is that a surjection between two sets
of the same finite cardinality is also an injection, therefore
a bijection, and that injection between two sets of the same
finite cardinality is also an surjection, therefore a bijection.

Injective implies surjective: There are lots of explanations.
Here’s just one of many. Let A = {a1, a2, . . . , an}. Let bi =
f(ai) for each i from 1 through n. Since f is an injection,
therefore b1, b2, . . . , bn are all distinct. Since all n elements
of B are accounted for, therefore B = {b1, b2, . . . , bn}, and
f is surjective. q.e.d.

Surjective implies injective: Let B = {b1, b2, . . . , bn}.
Since f is surjective, for each i from 1 through n, there
is some element of A sent to bi. Let one of those elements
be denoted ai. Since f is a function, therefore a1, a2, . . . , an
are all distinct. Since all n elements of A are accounted for,
therefore A = {a1, a2, . . . , an}. Each of the ai’s is sent to a
different bi, therefore f is injective. q.e.d.

8. Since the structure of rings is defined in terms of addi-
tion and multiplication, if f is a ring isomorphism, it will
preserve structure defined in terms of them. Verify that f
preserves 0, 1, negation, and subtraction.

Let f : A→ B be a ring homomorphism.

f preserves 0: We’re to show that f(0) = 0. Since f is
a ring isomorphism and 0 + 0 = 0, therefore f(0) + f(0) =
f(0). Subtracting f(0) from each side of that equation, we
conclude that f(0) = 0. q.e.d.

f preserves 1: We’re to show that f(1) = 1. This is more
difficult since it needn’t hold for homomorphisms, but it does
hold for isomorphisms. Let 1 be the identity in B. Some
element x ∈ A is sent to 1, that is, f(x) = 1. Since 1x = x
and f preserves multiplication, therefore f(1)f(x) = f(x),
but f(x) = 1, so f(1) = 1. q.e.d.

(Note: you can easily show that f(1)f(1) = f(1), but
that’s not enough to conclude that f(1) = 1 since in a ring,
aa = a need not imply a = 1.)

f preserves negation: We’re to show that f(−x) = −f(x).
Since x+(−x) = 0 and f preserves addition, therefore f(x)+
f(−x) = 0. Subtracting f(x) from each side of the equation,
it follows that f(−x) = −f(x). q.e.d.

f preserves subtraction: We’re to show that f(x − y) =
f(x)−f(y). Since (x−y)+y = x, therefore f(x−y)+f(y) =
f(x), and so f(x− y) = f(x)− f(y). q.e.d.

9. Prove that if f is a ring isomorphism, then so is its
inverse function f−1 : B → A.

We know that f preserves addition and multiplication,
and that f−1 is the inverse function of f . From those two
properties we’re to show that f−1 also preserves addition
and multiplication.

Show f−1(x) + f−1(y) = f−1(x+ y): Let s = f−1(x) and
t = f−1(y). Then f(s) = x and f(t) = y. So f(s + t) =
f(s) + f(t) = x + y. Therefore, s + t = f−1(x + y), that is,
f−1(x) + f−1(y) = f−1(x + y). q.e.d.

Products are analogous; just change addition to multipli-
cation in the preceding argument.

10. Prove that if f : A→ B and g : B → C are both ring
isomorphisms, then so is their composition (g ◦ f) : A→ C.

A ring isomorphism is a bijection that preserves addition
and multiplication. Since f and g are both bijections, so is
their composition g ◦ f .

Likewise, their composition preserves addition as shown
by the equation

(g ◦ f)(x + y) = g(f(x + y))

= g(f(x) + f(y))

= g(f(x)) + g(f(y))

= (g ◦ f)(x) + (g ◦ f)(y)

11. Prove that if a ring is isomorphic to a field, then that
ring is a field.

A field has two properties that a ring lacks, namely, a field
has commutative multiplication and a field has multiplica-
tive inverses. So these are the two properties to show for the
ring.

Let f : R → F be a ring isomorphism from the ring
R to the field F . We’re to show that R has commutative
multiplication and has reciprocals of nonzero elements.

Commutative multiplication: Let x and y be elements of
R. We’re to show that xy = yx. We know that f(x)f(y) =
f(y)f(x) holds in the field F . And since the isomorphism
f preserves multiplication, that means that f(xy) = f(yx).
Since f is a bijection, therefore xy = yx. q.e.d.
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Reciprocals of nonzero elements: Let x ∈ R be nonzero.
We’re to show that there is some element y in R so that
xy = 1. The element f(x) cannot be 0 in F since f(0) = 0

and f is an injection. Therefore, its inverse,
1

f(x)
, exists in

F . Since f is surjective, there is some element of R that is

sent to
1

f(x)
; call it y. Then f(y) =

1

f(x)
. Now f(xy) =

f(x)f(y) = f(x)
1

f(x)
= 1. Since f sends 1 to 1 (exercise 8)

and sends xy to 1, and f is injective, therefore xy = 1. Thus,
the nonzero element x of R has y as its reciprocal. q.e.d.

12. Suppose that both A and B are written multiplica-
tively and that f : A → B is a group isomorphism. Prove
that f(1) = 1 and f(x−1) = f(x)−1 for all x ∈ A.

The arguments for this exercise are the same as those for
exercise 8 for 0 and negation except that the notation is
multiplicative instead of additive.

13. Draw Hasse diagrams for the divisors of 30, 32, and
60.

The diagram for 30 looks like a cube, that for 32 is a
vertical line, and that for 60 is can be found from that of 30
by extending one side.
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