CLARK

Exercises
Math 225 Modern Algebra
Fall 2017

Formal proofs are not required for these exercises, but convincing arguments should be supplied.
7. Prove that if $f: A \rightarrow B$ is a function between two finite sets of the same cardinality, then the following three conditions are equivalent: (1) f is a bijection, (2) f is an injection, and (3) f is a surjection.

Note that (1) implies both (2) and three since a bijection is defined as being both an injection and a surjection. What remains to be shown is that a surjection between two sets of the same finite cardinality is also an injection, therefore a bijection, and that injection between two sets of the same finite cardinality is also an surjection, therefore a bijection.

Injective implies surjective: There are lots of explanations. Here's just one of many. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $b_{i}=$ $f\left(a_{i}\right)$ for each i from 1 through n. Since f is an injection, therefore $b_{1}, b_{2}, \ldots, b_{n}$ are all distinct. Since all n elements of B are accounted for, therefore $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, and f is surjective.
Q.E.D.

Surjective implies injective: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Since f is surjective, for each i from 1 through n, there is some element of A sent to b_{i}. Let one of those elements be denoted a_{i}. Since f is a function, therefore $a_{1}, a_{2}, \ldots, a_{n}$ are all distinct. Since all n elements of A are accounted for, therefore $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Each of the a_{i} 's is sent to a different b_{i}, therefore f is injective.
Q.E.D.
8. Since the structure of rings is defined in terms of addition and multiplication, if f is a ring isomorphism, it will preserve structure defined in terms of them. Verify that f preserves 0,1 , negation, and subtraction.

Let $f: A \rightarrow B$ be a ring homomorphism.
f preserves 0 : We're to show that $f(0)=0$. Since f is a ring isomorphism and $0+0=0$, therefore $f(0)+f(0)=$ $f(0)$. Subtracting $f(0)$ from each side of that equation, we conclude that $f(0)=0$.
Q.E.D.
f preserves 1: We're to show that $f(1)=1$. This is more difficult since it needn't hold for homomorphisms, but it does hold for isomorphisms. Let 1 be the identity in B. Some element $x \in A$ is sent to 1 , that is, $f(x)=1$. Since $1 x=x$ and f preserves multiplication, therefore $f(1) f(x)=f(x)$, but $f(x)=1$, so $f(1)=1$.
Q.E.D.
(Note: you can easily show that $f(1) f(1)=f(1)$, but that's not enough to conclude that $f(1)=1$ since in a ring, $a a=a$ need not imply $a=1$.)
f preserves negation: We're to show that $f(-x)=-f(x)$. Since $x+(-x)=0$ and f preserves addition, therefore $f(x)+$ $f(-x)=0$. Subtracting $f(x)$ from each side of the equation, it follows that $f(-x)=-f(x)$.
Q.E.D.
f preserves subtraction: We're to show that $f(x-y)=$ $f(x)-f(y)$. Since $(x-y)+y=x$, therefore $f(x-y)+f(y)=$ $f(x)$, and so $f(x-y)=f(x)-f(y)$. Q.E.D.
9. Prove that if f is a ring isomorphism, then so is its inverse function $f^{-1}: B \rightarrow A$.

We know that f preserves addition and multiplication, and that f^{-1} is the inverse function of f. From those two properties we're to show that f^{-1} also preserves addition and multiplication.

Show $f^{-1}(x)+f^{-1}(y)=f^{-1}(x+y)$: Let $s=f^{-1}(x)$ and $t=f^{-1}(y)$. Then $f(s)=x$ and $f(t)=y$. So $f(s+t)=$ $f(s)+f(t)=x+y$. Therefore, $s+t=f^{-1}(x+y)$, that is, $f^{-1}(x)+f^{-1}(y)=f^{-1}(x+y) . \quad$ Q.E.D.

Products are analogous; just change addition to multiplication in the preceding argument.
10. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are both ring isomorphisms, then so is their composition $(g \circ f): A \rightarrow C$.

A ring isomorphism is a bijection that preserves addition and multiplication. Since f and g are both bijections, so is their composition $g \circ f$.

Likewise, their composition preserves addition as shown by the equation

$$
\begin{aligned}
(g \circ f)(x+y) & =g(f(x+y)) \\
& =g(f(x)+f(y)) \\
& =g(f(x))+g(f(y)) \\
& =(g \circ f)(x)+(g \circ f)(y)
\end{aligned}
$$

11. Prove that if a ring is isomorphic to a field, then that ring is a field.

A field has two properties that a ring lacks, namely, a field has commutative multiplication and a field has multiplicative inverses. So these are the two properties to show for the ring.

Let $f: R \rightarrow F$ be a ring isomorphism from the ring R to the field F. We're to show that R has commutative multiplication and has reciprocals of nonzero elements.

Commutative multiplication: Let x and y be elements of R. We're to show that $x y=y x$. We know that $f(x) f(y)=$ $f(y) f(x)$ holds in the field F. And since the isomorphism f preserves multiplication, that means that $f(x y)=f(y x)$. Since f is a bijection, therefore $x y=y x . \quad$ Q.E.D.

Reciprocals of nonzero elements: Let $x \in R$ be nonzero. We're to show that there is some element y in R so that $x y=1$. The element $f(x)$ cannot be 0 in F since $f(0)=0$ and f is an injection. Therefore, its inverse, $\frac{1}{f(x)}$, exists in F. Since f is surjective, there is some element of R that is sent to $\frac{1}{f(x)}$; call it y. Then $f(y)=\frac{1}{f(x)}$. Now $f(x y)=$ $f(x) f(y)=f(x) \frac{1}{f(x)}=1$. Since f sends 1 to 1 (exercise 8) and sends $x y$ to 1 , and f is injective, therefore $x y=1$. Thus, the nonzero element x of R has y as its reciprocal. Q.E.D.
12. Suppose that both A and B are written multiplicatively and that $f: A \rightarrow B$ is a group isomorphism. Prove that $f(1)=1$ and $f\left(x^{-1}\right)=f(x)^{-1}$ for all $x \in A$.

The arguments for this exercise are the same as those for exercise 8 for 0 and negation except that the notation is multiplicative instead of additive.
13. Draw Hasse diagrams for the divisors of 30,32 , and 60.

The diagram for 30 looks like a cube, that for 32 is a vertical line, and that for 60 is can be found from that of 30 by extending one side.

Math 225 Home Page at
http://aleph0.clarku.edu/~djoyce/ma225/

