
Exercises
Math 225 Modern Algebra

Fall 2017

14. Prove the following three statements about greatest
common divisors.

gcd(a, b + ka) = gcd(a, b).
gcd(ak, bk) = k gcd(a, b).
If d = gcd(a, b) then gcd(a/d, b/d) = 1.

As usual, there are various different proofs that you might
derive for these. The ones I give are representative.

Proof. To show gcd(a, b + ka) = gcd(a, b). One general
method that works to show that two greatest common di-
visors are the same is to show that the common divisors
(greatest or not) of the first are the same as the common
divisors of the second. For if all the common divisors are
the same, then greatest common divisors must also be the
same.

In this case, we would show d
∣∣a and d

∣∣(b+ka) if and only

if d
∣∣a and d

∣∣b.
⇒: Assume d

∣∣a and d
∣∣(b + ka). Then d

∣∣ka (property 2
mentioned in the text, or you could show it directly), so
d
∣∣((b + ka)− ka) (property 5). Thus d

∣∣b.
⇐: Assume d

∣∣a and d
∣∣b. Then d

∣∣ka (property 2 again),

therefore d
∣∣(b + ka) (property 5 again). q.e.d.

Proof. To show gcd(ak, bk) = k gcd(a, b).
Let d = gcd(a, b) and c = gcd(ak, bk). We’ll show that

kd = c by showing that both kd|c and c|kd.
Since d divides both a and b, therefore kd divides both

ak and bk. But c divides every divisor of both ka and kb,
therefore c divides kd.

Since d = gcd(a, b), it is a linear combination of a and b.
That is, d = xa + yb. So dk = xka + ykb for some integers
x and y. But c divides both ka and kb, so c also divides dk.

Since both kd|c and c|kd, therefore c = kd. q.e.d.

Note that not all linear combinations of a and b equal the
gcd(a, b), so when showing something is equal to the gcd, it
isn’t enough to show it’s a linear combination of a and b.

Proof. To show that d = gcd(a, b) implies gcd(a/d, b/d) = 1.
Let e = a/d and f = b/d. Then by the preceding state-

ment d = gcd(a, b) = gcd(de, df) = d gcd(e, f). Therefore
1 = gcd(e, f), which says gcd(a/d, b/d) = 1. q.e.d.

17–26. These are all proofs of basic theorems of fields.
Each should be carefully stated with justifications for each
step. Those justifications should be axioms of fields, defini-
tions, or previously proved theorems. So, for example, you
could use the results in exercise 17 in the proof of exercise
18.

There are usually several different proofs for each state-
ment, so the ones I give below are only representative proofs,
not the only possible proofs.

17. Prove that 0 is unique. That is, there is only one
element x of a field that has the property that for all y,
x + y = y. (The proof that 1 is unique is similar.)

Proof. Suppose that x + y = y. The axiom of additive in-
verses for fields says that there is an element z that is an ad-
ditive inverse of y so that y+z = 0. Add z to each side of the
given equation x+y = y to conclude that (x+y)+z = y+z.
Since y + z = 0, therefore (x + y) + z = 0. Since addition
is associative in a field, therefore x + (y + z) = 0. Again,
y + z = 0, so x+ 0 = 0. By the axiom for the additive iden-
tity for fields, it follows that x = 0. Thus, the only element
of the field that has this property is 0. q.e.d.

Here’s an alternate proof which is a little shorter: Suppose
that there are two zeroes, denote them 0 and 0′. Then since
0 is a zero of the field, therefore 0 + 0′ = 0′. But 0′ is also a
zero of the field, so 0′ + 0 = 0. Since 0 + 0′ is equal to both
0′ and to 0, therefore 0′ = 0. Thus, there is only one zero in
a field. q.e.d.

18. Prove that each number has only one negation. That
is, for each x there is only one y such that x + y = 0. (The
proof that reciprocals of nonzero elements are unique is sim-
ilar.)

Proof. Suppose that x + y = 0 and that x + y′ = 0 as well.
Then x+y = x+y′. Let z be an additive inverse of x so that
z+x = 0. Add z to each side of the equation x+y = x+y′ to
conclude that z + (x+ y) = z + (x+ y′). Using associativity,
we can rewrite that as (z + x) + y = (z + x) + y′. But
z + x = 0, so 0 + y = 0 + y′. Since 0 is the additive identity,
therefore y = y′. Thus, there is only one additive inverse of
an element in a field q.e.d.

Now that we’ve got this theorem, we can denote the
unique additive inverse of an element x as −x.

19. Prove that the inverses of the identity elements are
themselves, that is, −0 = 0, and 1−1 = 1.

Proof. In light of the previous exersize, in order to show that
something y is the additive inverse of 0, it’s enough to show
that 0 + y = 0. But 0 + 0 = 0, therefore 0 is the additive
inverse of 0, that is, −0 = 0.
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Likewise, to show that y is the multiplicative inverse of 1,
it’s enough to show that 1y = 1. But 1 · 1 = 1, so 1 is the
multiplicative inverse of 1, that is 1−1 = 1. q.e.d.

20. Prove that multiplication distributes over subtraction:
x(y − z) = xy − xz.

Proof. Subtraction is defined in terms of addition of the
negation. So x(y− z) means x(y +−z), and xy− xz means
xy + (−xz). Therefore, we need to show that x(y + −z) =
xy + (−xz). Since multiplication distributes over addition,
x(y + −z) = xy + x(−z). All that’s left to show is that
−xz = x(−z).

To show that the negation of xz is equal to x(−z), it’s
enough to show that xz +x(−z) = 0, but z + (−z) = 0, and
multiplying that by x and applying distributivity it follows
that xz + z(−z) = 0. q.e.d.

21. Prove that 0 times any element in a field is 0: 0x = 0.

Proof. Since 0 + 0 = 0, therefore 0x + 0x = 0x by distribu-
tivity. Subtracting 0x from each side, 0x = 0. q.e.d.

That proof could be given more details. Subtracting 0x
really means adding −0x. So from 0x + 0x = 0x, the next
equation is (0x + 0x) + (−0x) = 0x + (−0x). Then by as-
sociativity, 0x + (0x + (−0x)) = 0x + (−0x). Next, since
0x + (−0x) = 0, we get 0x + 0 = 0, then since 0 is the
additive identity, therefore 0x = 0.

To be absolutely complete it’s necessary to put in all the
steps and a justification for each step. As you go along, you
can skip some of that detail if you know how to supply it if
asked. You’ll get a good idea of what you can fill in as you
gain experience in developing and writing proofs.

22. Prove the following properties concerning multiplica-
tion by negatives: (−1)x = −x, −(−x) = x, (−x)y =
−(xy) = x(−y), and (−x)(−y) = xy.

Proof. To show (−1)x = −x. That says that −1 times x is
the negation of x. To prove that, it’s enough to prove that
the sum of (−1)x and x is 0. The equation (−1)x + x = 0
follows from (−1)x + 1x = 0, and that, by distributivity
follows from ((−1) + 1)x = 0. That itself, by exercise 21,
follows from (−1) + 1 = 0, which is the definition of −1.

q.e.d.

Proof. To show −(−x) = x. To show the negation of −x
is x, it’s enough to show that (−x) + x = 0, but that’s the
definition of −x. q.e.d.

Proof. To show (−x)y = −(xy) = x(−y). To show that
(−x)y is the negation of xy, it’s enough to show that (−x)y+
xy = 0. But that follows from (−x) + x = 0 by multiplying
by y, and applying distributivity and exercise 21.

The other equation is similar, or you could note that it
follows from the first equation by commutativity. q.e.d.

Proof. To show (−x)(−y) = xy. From the preceding part
(−x)(−y) = −x(−y) = −(−xy) which equals xy by the
second part of this exercise. q.e.d.

23. Prove the following properties concerning reciprocals:
(x−1)−1 = x, and (xy)−1 = x−1y−1.

The proofs are identical to some of those in the preceding
exercise except everything is multiplicative instead of addi-
tive.

24. Prove that
x

y
=

w

z
if and only if xz = yw.

It’s assumed here that y and z are not 0 in order for them
to appear in the denominators.

Use the definition of division,
x

y
= x(y−1), and then use

properties of multiplication.
x

y
=

w

z
iff x(y−1) = w(z−1).

Multiply by yz to get x(y−1)yz = w(z−1)yz. Replace y−1y
by 1 and z−1z by 1 (and use commutativity to conclude
xz = yw¿

For the reverse direction, multiply by y−1z−1 instead of
yz.

25. Prove the following properties concerning division:
x

y
± w

z
=

xz ± yw

yz
,
x

y

w

z
=

xw

yz
, and

x

y

/w

z
=

xz

yw
.

Here’s an equational proof of
x

y
+

w

z
=

xz + yw

yz
. An

equational proof is one long continued equation that starts
with the term on the left side and ends with the term on the
right side.

x

y
+

w

z
= xy−1 + wz−1

= xy−1zz−1 + wz−1yy−1

= (xz + yw)y−1z−1 =
xz + yw

yz

In an equational proof, it should be obvious what the jus-
tification for each equality is. If it’s not then supply the
justification. Associativity and commutativity aren’t usu-
ally mentioned because associativity is implicitly used every
time a ternary sum or difference is used, and commutativ-
ity is easily recognized as the terms get exchanges. The
above equational proof used both. Distributivity is also eas-
ily recognized as well as basic properties of 0, 1, negations,
reciprocals, and definitions of subtraction and division.
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26. Prove that if xy = 0, then either x = 0 or y = 0.

Proof. If x is not 0, then it has an inverse x−1. Multiply
the equation xy = 0 by x−1 to get y = 0. This if x is not 0,
then y is 0. Either x = 0 or y = 0. q.e.d.

Math 225 Home Page at
http://aleph0.clarku.edu/~djoyce/ma225/
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