Exercises

Math 225 Modern Algebra
Fall 2017

38. As you know, if n € Z, then nZ, also written (n), is
an ideal of the ring Z. Consider the two ideals I = 6Z and
J = 10Z of the Z.

(a). Determine their intersection I N .J as a principal ideal
of Z.

An integer n lies in intersection 6Z N 10Z if it lies both
in 6Z and in 10Z. That means both 6‘n and 10‘n. That
happens if and only if the LCM(6, 10)’71. Since LCM(6, 10) =
30, that means that 30|n. Thus 6Z N 10Z = 30Z.

(b). Prove that the union I U J is not an ideal of Z.

The union 6Z U 10Z consists of all integers that are mul-
tiples of 6 or 10 or both. This union does include 0 and is
closed under multiples of its elements, so if it’s not an ideal,
it will have to be because its not closed under addition. Both
6 and 10 lie in the union, but their sum 16 does not lie in
the union. Therefore, it’s not an ideal.

39. Consider the theorem:

Theorem 1 (Congruence modulo an ideal). Let I be an
ideal of a ring R. A congruence, called congruence modulo
1, is defined by

=y (mod I) if and only if z —y € I.
The quotient ring, R/=, is denoted R/I.

Prove these two steps required in the proof of the theorem:
ifr—a' €landy—y €1, then (x+y)— (2 +y') € [ and
(xy —2'y’) € L.

Proof. Let v — 2’ € I and y — y' € I. Since ideals are
closed under addition, therefore z — '’ +y — 3y € I. But
v—a'+y—y =(@+y)— (@' +y),s0 (x+y)— (2" +y) € L.

Also, (zy —a'y') = (zy —2'y) + (a'y — 2'y’) = (x — 2"y +
z'(y—vy'). Since (x—2')y € IR C I, and 2'(y—y') € RI C I,
their sum (xy — 2'y’) € I. Q.E.D.

40. Consider the theorem:
Theorem 2. If f : R — S is a ring homomorphism then
the quotient ring R/ Ker f is isomorphic to the image ring
f(R), the isomorphism being given by

R/Kerf — f(R)

z+Kerf — f(x)

Prove the preceding theorem.

(a). First show that the assignment z +Ker f to f(z) is well
defined. That means that if x + Ker f = 2/ + Ker f, then
f(z) = f(z'). Call that assignment ¢.

Suppose that z+Ker f = 2’ +Ker f. Then z—z' € Ker f,

so f(x —2') =0. But f(z —2') = f(z) — f(2'), so f(z) =
f@).
(b). Show that assignment is a ring homomorphism. Show
(1) p(1+Ker f) =1, (2) ¢((z+Ker )+ (y+Ker f)) = ¢(xz+
Ker f) + ¢(y + Ker f), and (3) ¢((z + Ker f)(y + Ker f)) =
¢(x + Ker f)o(y + Ker f).

Part (1): f(1) = 1 since f is a ring homomorphism.
Therefore ¢(1) = f(1) = 1.

Part (2): o((z-+ Ker f)+ (y-+Ker ) = g(a-+y+Ker f) =
flx+y) = f(x) + fly) == ¢(z + Ker f) + ¢(y + Ker f).

Part (3): ¢((z + Ker f)(y + Ker f)) = ¢(zy + Ker f) =
flzy) = f(2)f(y) = o(x + Ker f)¢(y + Ker f). Q.E.D.

Since elements of R/ Ker f can be named by elements of R,
the notation x 4+ Ker f is simplified to z. Also, the function
¢ is also denoted f, because with this shortened notation for
elements of R/ Ker f, ¢(x) = f(x).

41. Prove that R/I is an integral domain if and only if
R/I satisfies both conditions (1) I # R, and (2) Vz,y € R,
if xy € I, then either z € I or y € 1.

Proof. Recall that R/I is an integral domain if it is a com-
mutative ring in which 0 # 1 that satisfies one of the two
equivalent conditions: it has no zero-divisors, or it satisfies
the cancellation law.

There are various proofs. In each, the condition that 0 #
1 in R/I corresponds to I # R, and the condition that
cancellation and/or zero-divisors in R/I corresponds to zy €
I implyingx € I or y € 1.

The condition that 0 # 1in R/I actually says 0+1 # 1+1,
and that’s equivalent to saying 1 ¢ I.

The condition that R/I has no zero-divisors says that if
(x+I)(y+1I) = 0+1, then either z+1 = 0+1 or y+I = 0+1.
That says zy + I = I (equivalently zy € I) implies « € I or
y € I, and that’s condition (2).

Q.E.D.
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