

Exercises Math 225 Modern Algebra Fall 2017

38. As you know, if $n \in \mathbf{Z}$, then $n\mathbf{Z}$, also written (n), is an ideal of the ring \mathbf{Z} . Consider the two ideals $I = 6\mathbf{Z}$ and $J = 10\mathbf{Z}$ of the \mathbf{Z} .

(a). Determine their intersection $I \cap J$ as a principal ideal of **Z**.

An integer *n* lies in intersection $6\mathbf{Z} \cap 10\mathbf{Z}$ if it lies both in $6\mathbf{Z}$ and in $10\mathbf{Z}$. That means both 6|n and 10|n. That happens if and only if the LCM(6, 10)|n. Since LCM(6, 10) =30, that means that 30|n. Thus $6\mathbf{Z} \cap 10\mathbf{Z} = 30\mathbf{Z}$.

(b). Prove that the union $I \cup J$ is not an ideal of **Z**.

The union $6\mathbf{Z} \cup 10\mathbf{Z}$ consists of all integers that are multiples of 6 or 10 or both. This union does include 0 and is closed under multiples of its elements, so if it's not an ideal, it will have to be because its not closed under addition. Both 6 and 10 lie in the union, but their sum 16 does not lie in the union. Therefore, it's not an ideal.

39. Consider the theorem:

Theorem 1 (Congruence modulo an ideal). Let I be an ideal of a ring R. A congruence, called *congruence modulo* I, is defined by

$$x \equiv y \pmod{I}$$
 if and only if $x - y \in I$.

The quotient ring, $R/_{\equiv}$, is denoted R/I.

Prove these two steps required in the proof of the theorem: if $x - x' \in I$ and $y - y' \in I$, then $(x + y) - (x' + y') \in I$ and $(xy - x'y') \in I$.

Proof. Let $x - x' \in I$ and $y - y' \in I$. Since ideals are closed under addition, therefore $x - x' + y - y' \in I$. But x - x' + y - y' = (x + y) - (x' + y'), so $(x + y) - (x' + y') \in I$. Also, (xy - x'y') = (xy - x'y) + (x'y - x'y') = (x - x')y + x'(y - y'). Since $(x - x')y \in IR \subseteq I$, and $x'(y - y') \in RI \subseteq I$, their sum $(xy - x'y') \in I$. Q.E.D.

40. Consider the theorem:

Theorem 2. If $f : R \to S$ is a ring homomorphism then the quotient ring $R/\operatorname{Ker} f$ is isomorphic to the image ring f(R), the isomorphism being given by

$$\begin{array}{rccc} R/\operatorname{Ker} f & \to & f(R) \\ x + \operatorname{Ker} f & \mapsto & f(x) \end{array}$$

Prove the preceding theorem.

(a). First show that the assignment x + Ker f to f(x) is well defined. That means that if x + Ker f = x' + Ker f, then f(x) = f(x'). Call that assignment ϕ .

Suppose that x + Ker f = x' + Ker f. Then $x - x' \in \text{Ker } f$, so f(x - x') = 0. But f(x - x') = f(x) - f(x'), so f(x) = f(x').

(b). Show that assignment is a ring homomorphism. Show (1) $\phi(1 + \operatorname{Ker} f) = 1$, (2) $\phi((x + \operatorname{Ker} f) + (y + \operatorname{Ker} f)) = \phi(x + \operatorname{Ker} f) + \phi(y + \operatorname{Ker} f)$, and (3) $\phi((x + \operatorname{Ker} f)(y + \operatorname{Ker} f)) = \phi(x + \operatorname{Ker} f)\phi(y + \operatorname{Ker} f)$.

Part (1): f(1) = 1 since f is a ring homomorphism. Therefore $\phi(1) = f(1) = 1$.

Part (2): $\phi((x + \operatorname{Ker} f) + (y + \operatorname{Ker} f)) = \phi(x + y + \operatorname{Ker} f) = f(x + y) = f(x) + f(y) = \phi(x + \operatorname{Ker} f) + \phi(y + \operatorname{Ker} f).$

Part (3): $\phi((x + \text{Ker } f)(y + \text{Ker } f)) = \phi(xy + \text{Ker } f) = f(xy) = f(x)f(y) = \phi(x + \text{Ker } f)\phi(y + \text{Ker } f)$. Q.E.D. Since elements of R/Ker f can be named by elements of R, the notation x + Ker f is simplified to x. Also, the function ϕ is also denoted f, because with this shortened notation for elements of $R/\text{Ker } f, \phi(x) = f(x)$.

41. Prove that R/I is an integral domain if and only if R/I satisfies both conditions (1) $I \neq R$, and (2) $\forall x, y \in R$, if $xy \in I$, then either $x \in I$ or $y \in I$.

Proof. Recall that R/I is an integral domain if it is a commutative ring in which $0 \neq 1$ that satisfies one of the two equivalent conditions: it has no zero-divisors, or it satisfies the cancellation law.

There are various proofs. In each, the condition that $0 \neq 1$ in R/I corresponds to $I \neq R$, and the condition that cancellation and/or zero-divisors in R/I corresponds to $xy \in I$ implying $x \in I$ or $y \in I$.

The condition that $0 \neq 1$ in R/I actually says $0+I \neq 1+I$, and that's equivalent to saying $1 \notin I$.

The condition that R/I has no zero-divisors says that if (x+I)(y+I) = 0+I, then either x+I = 0+I or y+I = 0+I. That says xy + I = I (equivalently $xy \in I$) implies $x \in I$ or $y \in I$, and that's condition (2).

Math 225 Home Page at http://aleph0.clarku.edu/~djoyce/ma225/