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38. As you know, if n ∈ Z, then nZ, also written (n), is
an ideal of the ring Z. Consider the two ideals I = 6Z and
J = 10Z of the Z.

(a). Determine their intersection I ∩ J as a principal ideal
of Z.

An integer n lies in intersection 6Z ∩ 10Z if it lies both
in 6Z and in 10Z. That means both 6

∣∣n and 10
∣∣n. That

happens if and only if the lcm(6, 10)
∣∣n. Since lcm(6, 10) =

30, that means that 30|n. Thus 6Z ∩ 10Z = 30Z.

(b). Prove that the union I ∪ J is not an ideal of Z.

The union 6Z ∪ 10Z consists of all integers that are mul-
tiples of 6 or 10 or both. This union does include 0 and is
closed under multiples of its elements, so if it’s not an ideal,
it will have to be because its not closed under addition. Both
6 and 10 lie in the union, but their sum 16 does not lie in
the union. Therefore, it’s not an ideal.

39. Consider the theorem:

Theorem 1 (Congruence modulo an ideal). Let I be an
ideal of a ring R. A congruence, called congruence modulo
I, is defined by

x ≡ y (mod I) if and only if x− y ∈ I.

The quotient ring, R/≡, is denoted R/I.

Prove these two steps required in the proof of the theorem:
if x− x′ ∈ I and y− y′ ∈ I, then (x+ y)− (x′ + y′) ∈ I and
(xy − x′y′) ∈ I.

Proof. Let x − x′ ∈ I and y − y′ ∈ I. Since ideals are
closed under addition, therefore x − x′ + y − y′ ∈ I. But
x−x′+y−y′ = (x+y)− (x′+y′), so (x+y)− (x′+y′) ∈ I.

Also, (xy−x′y′) = (xy−x′y) + (x′y−x′y′) = (x−x′)y+
x′(y−y′). Since (x−x′)y ∈ IR ⊆ I, and x′(y−y′) ∈ RI ⊆ I,
their sum (xy − x′y′) ∈ I. q.e.d.

40. Consider the theorem:

Theorem 2. If f : R → S is a ring homomorphism then
the quotient ring R/Ker f is isomorphic to the image ring
f(R), the isomorphism being given by

R/Ker f → f(R)
x+ Ker f 7→ f(x)

Prove the preceding theorem.

(a). First show that the assignment x+Ker f to f(x) is well
defined. That means that if x + Ker f = x′ + Ker f , then
f(x) = f(x′). Call that assignment φ.

Suppose that x+Ker f = x′+Ker f . Then x−x′ ∈ Ker f ,
so f(x − x′) = 0. But f(x − x′) = f(x) − f(x′), so f(x) =
f(x′).

(b). Show that assignment is a ring homomorphism. Show
(1) φ(1+Ker f) = 1, (2) φ((x+Ker f)+(y+Ker f)) = φ(x+
Ker f) + φ(y + Ker f), and (3) φ((x+ Ker f)(y + Ker f)) =
φ(x+ Ker f)φ(y + Ker f).

Part (1): f(1) = 1 since f is a ring homomorphism.
Therefore φ(1) = f(1) = 1.

Part (2): φ((x+Ker f)+(y+Ker f)) = φ(x+y+Ker f) =
f(x+ y) = f(x) + f(y) == φ(x+ Ker f) + φ(y + Ker f).

Part (3): φ((x + Ker f)(y + Ker f)) = φ(xy + Ker f) =
f(xy) = f(x)f(y) = φ(x+ Ker f)φ(y + Ker f). q.e.d.

Since elements of R/Ker f can be named by elements of R,
the notation x+ Ker f is simplified to x. Also, the function
φ is also denoted f , because with this shortened notation for
elements of R/Ker f , φ(x) = f(x).

41. Prove that R/I is an integral domain if and only if
R/I satisfies both conditions (1) I 6= R, and (2) ∀x, y ∈ R,
if xy ∈ I, then either x ∈ I or y ∈ I.

Proof. Recall that R/I is an integral domain if it is a com-
mutative ring in which 0 6= 1 that satisfies one of the two
equivalent conditions: it has no zero-divisors, or it satisfies
the cancellation law.

There are various proofs. In each, the condition that 0 6=
1 in R/I corresponds to I 6= R, and the condition that
cancellation and/or zero-divisors in R/I corresponds to xy ∈
I implying x ∈ I or y ∈ I.

The condition that 0 6= 1 in R/I actually says 0+I 6= 1+I,
and that’s equivalent to saying 1 /∈ I.

The condition that R/I has no zero-divisors says that if
(x+I)(y+I) = 0+I, then either x+I = 0+I or y+I = 0+I.
That says xy + I = I (equivalently xy ∈ I) implies x ∈ I or
y ∈ I, and that’s condition (2).

q.e.d.
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