

Exercises
Math 225 Modern Algebra
Fall 2017

38. As you know, if $n \in \mathbf{Z}$, then $n \mathbf{Z}$, also written (n), is an ideal of the ring \mathbf{Z}. Consider the two ideals $I=6 \mathbf{Z}$ and $J=10 \mathbf{Z}$ of the \mathbf{Z}.
(a). Determine their intersection $I \cap J$ as a principal ideal of \mathbf{Z}.

An integer n lies in intersection $6 \mathbf{Z} \cap 10 \mathbf{Z}$ if it lies both in $6 \mathbf{Z}$ and in $10 \mathbf{Z}$. That means both $6 \mid n$ and $10 \mid n$. That happens if and only if the $\operatorname{LCM}(6,10) \mid n$. Since $\operatorname{LCm}(6,10)=$ 30 , that means that $30 \mid n$. Thus $6 \mathbf{Z} \cap 10 \mathbf{Z}=30 \mathbf{Z}$.
(b). Prove that the union $I \cup J$ is not an ideal of \mathbf{Z}.

The union $6 \mathbf{Z} \cup 10 \mathbf{Z}$ consists of all integers that are multiples of 6 or 10 or both. This union does include 0 and is closed under multiples of its elements, so if it's not an ideal, it will have to be because its not closed under addition. Both 6 and 10 lie in the union, but their sum 16 does not lie in the union. Therefore, it's not an ideal.
39. Consider the theorem:

Theorem 1 (Congruence modulo an ideal). Let I be an ideal of a ring R. A congruence, called congruence modulo I, is defined by

$$
x \equiv y(\bmod I) \text { if and only if } x-y \in I
$$

The quotient ring, R / \equiv, is denoted R / I.
Prove these two steps required in the proof of the theorem: if $x-x^{\prime} \in I$ and $y-y^{\prime} \in I$, then $(x+y)-\left(x^{\prime}+y^{\prime}\right) \in I$ and $\left(x y-x^{\prime} y^{\prime}\right) \in I$.
Proof. Let $x-x^{\prime} \in I$ and $y-y^{\prime} \in I$. Since ideals are closed under addition, therefore $x-x^{\prime}+y-y^{\prime} \in I$. But $x-x^{\prime}+y-y^{\prime}=(x+y)-\left(x^{\prime}+y^{\prime}\right)$, so $(x+y)-\left(x^{\prime}+y^{\prime}\right) \in I$.

Also, $\left(x y-x^{\prime} y^{\prime}\right)=\left(x y-x^{\prime} y\right)+\left(x^{\prime} y-x^{\prime} y^{\prime}\right)=\left(x-x^{\prime}\right) y+$ $x^{\prime}\left(y-y^{\prime}\right)$. Since $\left(x-x^{\prime}\right) y \in I R \subseteq I$, and $x^{\prime}\left(y-y^{\prime}\right) \in R I \subseteq I$, their sum $\left(x y-x^{\prime} y^{\prime}\right) \in I$.
Q.E.D.
40. Consider the theorem:

Theorem 2. If $f: R \rightarrow S$ is a ring homomorphism then the quotient ring $R / \operatorname{Ker} f$ is isomorphic to the image ring $f(R)$, the isomorphism being given by

$$
\begin{array}{rll}
R / \operatorname{Ker} f & \rightarrow f(R) \\
x+\operatorname{Ker} f & \mapsto & f(x)
\end{array}
$$

Prove the preceding theorem.
(a). First show that the assignment $x+\operatorname{Ker} f$ to $f(x)$ is well defined. That means that if $x+\operatorname{Ker} f=x^{\prime}+\operatorname{Ker} f$, then $f(x)=f\left(x^{\prime}\right)$. Call that assignment ϕ.

Suppose that $x+\operatorname{Ker} f=x^{\prime}+\operatorname{Ker} f$. Then $x-x^{\prime} \in \operatorname{Ker} f$, so $f\left(x-x^{\prime}\right)=0$. But $f\left(x-x^{\prime}\right)=f(x)-f\left(x^{\prime}\right)$, so $f(x)=$ $f\left(x^{\prime}\right)$.
(b). Show that assignment is a ring homomorphism. Show
(1) $\phi(1+\operatorname{Ker} f)=1,(2) \phi((x+\operatorname{Ker} f)+(y+\operatorname{Ker} f))=\phi(x+$
$\operatorname{Ker} f)+\phi(y+\operatorname{Ker} f)$, and (3) $\phi((x+\operatorname{Ker} f)(y+\operatorname{Ker} f))=$ $\phi(x+\operatorname{Ker} f) \phi(y+\operatorname{Ker} f)$.

Part (1): $f(1)=1$ since f is a ring homomorphism. Therefore $\phi(1)=f(1)=1$.

Part $(2): \phi((x+\operatorname{Ker} f)+(y+\operatorname{Ker} f))=\phi(x+y+\operatorname{Ker} f)=$ $f(x+y)=f(x)+f(y)==\phi(x+\operatorname{Ker} f)+\phi(y+\operatorname{Ker} f)$.

Part $(3): \phi((x+\operatorname{Ker} f)(y+\operatorname{Ker} f))=\phi(x y+\operatorname{Ker} f)=$ $f(x y)=f(x) f(y)=\phi(x+\operatorname{Ker} f) \phi(y+\operatorname{Ker} f) . \quad$ Q.E.D.
Since elements of $R / \operatorname{Ker} f$ can be named by elements of R, the notation $x+\operatorname{Ker} f$ is simplified to x. Also, the function ϕ is also denoted f, because with this shortened notation for elements of $R / \operatorname{Ker} f, \phi(x)=f(x)$.
41. Prove that R / I is an integral domain if and only if R / I satisfies both conditions (1) $I \neq R$, and (2) $\forall x, y \in R$, if $x y \in I$, then either $x \in I$ or $y \in I$.

Proof. Recall that R / I is an integral domain if it is a commutative ring in which $0 \neq 1$ that satisfies one of the two equivalent conditions: it has no zero-divisors, or it satisfies the cancellation law.

There are various proofs. In each, the condition that $0 \neq$ 1 in R / I corresponds to $I \neq R$, and the condition that cancellation and/or zero-divisors in R / I corresponds to $x y \in$ I implying $x \in I$ or $y \in I$.

The condition that $0 \neq 1$ in R / I actually says $0+I \neq 1+I$, and that's equivalent to saying $1 \notin I$.

The condition that R / I has no zero-divisors says that if $(x+I)(y+I)=0+I$, then either $x+I=0+I$ or $y+I=0+I$. That says $x y+I=I$ (equivalently $x y \in I$) implies $x \in I$ or $y \in I$, and that's condition (2).
Q.E.D.

Math 225 Home Page at
http://aleph0.clarku.edu/~djoyce/ma225/

