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This column, the spotlight is on complexity, computational and communicational:

1. Mathematics and Computation, by Avi Wigderson. A sweeping look at computational complexity
and adjacent fields, especially how they interact with mathematics. Review by Frederic Green.

2. Communication Complexity and Applications, by Anup Rao and Amir Yehudayoff. A textbook on
this important topic. Review by Michaël Cadilhac.

As always, please contact me to write a review; choose from among the books listed on the next pages,
or, if you are interested in anything not on the list, just send me a note.
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Paulino, and Peter Müller.

6. Variational Bayesian Learning Theory, by Shinichi Nakajima, Kazuho Watanabe, and Masashi Sugiyama.
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Tecuci, Dorin Marcu, Mihai Boicu, and David A. Schum.

8. Quantum Computing: An Applied Approach, by Jack D. Hidary

Discrete Mathematics and Computing
1. Mathematics in Computing, by Gerard O’Regan
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dents Should Know, by Arnold L. Rosenberg and Denis Trystram

Cryptography and Security

1. Computer Security and the Internet: Tools and Jewels, by Paul C. van Oorschot

Combinatorics and Graph Theory
1. The Zeroth Book of Graph Theory: An Annotated Translation of Les Réseaux (ou Graphes) – André

Sainte-Laguë (1926), translated by Martin Charles Golumbic

2. Finite Geometry and Combinatorial Applications, by Simeon Ball

3. Combinatorics, Words and Symbolic Dynamics, Edited by Valérie Berthé and Michel Rigo
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Programming etc.

1. Formal Methods: An Appetizer, by Flemming Nielson and Hanne Riis Nielson
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Review of2

Mathematics and Computation
by Avi Wigderson

Princeton University Press, 2019
440 pages, Hardcover, $49.95.

Review by
Frederic Green (fgreen@clarku.edu)

Department of Mathematics and Computer Science
Clark University, Worcester, MA

1 Introduction

Mathematics and computation are inextricably entangled3. We couldn’t do one without the other. The
need to calculate can be traced to early human history, and mathematics developed in large part to enable
computation. And computation is necessary to propel mathematics. One often loses sight of the fact that
the great mathematicians of the past were also prodigious computers: For example, Gauss, Kummer and
the other great pioneers of number theory did vast amounts of computation to arrive at or reinforce many of
their insights.

And after all, the modern concept and technology of computation grew out of mathematics. While
the idea of mechanizing calculation, or even thought, goes back for centuries, having been pondered by
philosophers, mathematicians, scientists, and engineers, the astounding technological revolution of the late
20th century had its seeds in purely mathematical considerations. Cantor’s set theory, Hilbert’s problems, the
formalization of logic, and Gödel’s incompleteness theorem ultimately gave rise to the mathematical theory
of computation. Turing’s famous paper on “computable numbers” was (in Wigderson’s words) the “big
bang” that led to modern computer science, and in particular the central ideas of Computational Complexity
Theory.

Mathematics and computation continue to work hand in hand, and it is of vital importance to understand
their interaction, and how each one nurtures the other. That, in large part, is what this book is about, as we
next explore.

2 Synopsis

The book is divided into 20 chapters. It would be impossible to improve on the summary Wigderson gives in
his own introduction. Nevertheless, since you’re reading this review, there’s a good chance you don’t have
that introduction, so here’s my own version.

One of my professors in graduate school structured final exams like certain cultural events. One of them
took the form of a menu (some problems were appetizers, others main courses, and finally a dessert), another
the form of a concert program (a number of movements, with labels such as “Andante” and “Allegro”). I
can’t help but fancy that this book is structured something like a performance, perhaps a play with incidental
music. There is an Overture (the introduction, Chapter 1), a Prologue (a broad look at the roots of the field, in
Chapter 2, aptly titled “Prelude”), a long first act (Chapters 3 - 12, studying the many fundamental aspects
of computational complexity, concentrating on the key resource of time), an “Interlude” (Chapter 13, on

2 c©2021, Frederic Green
3Given the technical overtones of the word, I hope you forgive its colloquial use here.
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particular interactions between complexity and the rest of mathematics), a somewhat briefer second act
(Chapters 14 - 19), concentrating on other resources such as time, and various applications, and finally an
“Epilogue” (Chapter 20), putting forth a perspective on the Theory of Computing broadly conceived.

Here, then, is a more detailed synopsis of the action:
In addition to the summary mentioned previously, we learn in the Introduction about the backstory

referred to above: The origins of both mathematics and computation, and the meteoric ascent of computation
over the course of the past century. In the brief Prelude we are introduced to the principal characters,
various mathematical problems (regarding such diverse notions as Diophantine equations, logic, smooth
manifolds, and elliptic equations), how we understand such problems via algorithms, and the efficiency of
those algorithms.

The action then commences in earnest in Chapter 3 (“Computational complexity 101”), which moti-
vates and defines classification/decision problems and the complexity classes at the heart of computational
complexity: P , NP , and coNP . We encounter both the nondeterminism and verification characterizations
of NP , and how it contrasts with coNP . We see the idea of reducibility (central not only to complexity
theory, but to all of computer science), and its use in defining completeness for both the classes NP and
coNP . Many examples of problems in P as well asNP-complete problems are given, and the scene closes
with some reflections on the depth and impact of the P vs. NP question. The horizons are broadened
in the subsequent chapter to classes “around” NP , including (probably) much larger classes such as PH,
#P , and PSPACE . They are also refined in discussions of constraint satisfaction problems, average-case
complexity, and one-way functions with their relation to cryptography.

The very hard question of hardness now makes its entrance in the next chapter: How do we prove the
widely believed conjecture P 6= NP? Oracles relative to which either outcome holds imply that old-
fashioned diagonalization will not suffice. Instead, there is some hope that exponential circuit lower bounds
would provide a technique. However, the known circuit lower bound techniques also face imposing barriers
in the form of natural proofs, an idea revisited in a later chapter.

The verification view ofNP evokes the idea of mathematical proof, and indeed how much effort (com-
plexity) it might take to prove a theorem. Proof complexity is the subject of the next chapter (6, if you’ve lost
count). Cook and Reckhow showed that there are polynomially bounded proof systems iff NP = coNP ,
thus endowing a deep significance to the (presumed) inequality of those classes. There are a number of con-
crete proof systems, algebraic (Nullstellensatz and Polynomial Calculus systems), geometric (e.g., Cutting
Plane proofs), and logical (e.g., Frege systems). As different as they may seem, there are many technical
connections between proof complexity and circuit complexity, although unfortunately another commonality
is the difficulty in making truly significant advances in either one.

The next 4 chapters (7 – 10) are devoted to various aspects of randomness, a major theme in the field, the
author himself being a major authority on that theme. While randomness is immensely useful for efficient
computation, evidence has accumulated over the years that it may not be as powerful a resource as originally
thought. Indeed, the evidence supports the conjecture P = BPP , originally thought to be false, and now
widely held. The vast field of derandomization, and its relationship with computational and cryptographic
pseudo-randomness, and how hardness leads to pseudo-randomness, are discussed in Chapter 7. For some
classes of objects (e.g., random graphs) certain properties hold for almost all elements of the class (e.g., the
property of being “(3 log n)-Ramsey”). This manifestation of pseudo-randomness, called “abstract pseudo-
randomness,” is covered in the following chapter. It is remarkable that some of the most important problems
of mathematics, including the Riemann Hypothesis and P vs. NP , can be cast in this form. E.g., for P
vs. NP , nearly all functions require exponential circuits. The trick is to find a particular function (e.g.,
SAT) that has this property, an idea colorfully described as “finding hay in haystacks.” A central tool in
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pseudo-randomness is the expander graph, also discussed in this chapter. We then move on, in Chapter 9, to
the problem of extracting randomness from less than perfect randomness. And Chapter 10 turns to the role
of randomness in proofs. Here we meet the principal character in the world of interactive proofs, IP , and
the surprising (and non-relativizing) correspondence IP = PSPACE . This was a milestone along a line
of research that led to other amazing results such asMIP = NEXP , and the scaled-down version of the
latter which exhibited probabilistically checkable proofs for NP , which has enormous impact on hardness
of approximation. The discussion of zero-knowledge proofs happily conveys to the reader much more than
zero knowledge about this singular phenomenon. This chapter ends with a sweeping perspective on the
extraordinary applicability of such proofs to daily life as well as the sciences.

Quantum computing (QC) is surely among the most revolutionary ideas in computation, regardless of
its practical outcome. It elevates the Church-Turing thesis to the status of a physical law. Given its brevity
Chapter 11 is a surprisingly deep survey of how quantum physics has interacted with computational com-
plexity, in ideas as diverse as the fundamental nature of QC itself, its power via the famous algorithms
of Shor and Grover, and how such concepts as BPP and NP have been imported into the classes BQP
and QMA. Various formulations of QC (e.g., the quantum Turing machine, adiabatic computation, quan-
tum circuits) are discussed, as is the notion of quantum interactive proofs, quantum certification, and even
building quantum computers.

The last scene in the book’s “first act,” Chapter 12, looks into the complexity of polynomial arithmetic
and its associated model of computation, arithmetic circuits. This captures the easiness or hardness of some
of the most important quantities in mathematics, such as symmetric polynomials, matrix multiplication, the
determinant and the permanent. These considerations lead to natural analogs of P and NP , namely VP
and VNP . Although the challenges are still imposing, the prospect of separating VP and VNP appear
somewhat brighter, and have led to intriguing developments such as geometric complexity theory and a
bridge between boolean and arithmetic complexity via polynomial identity testing.

The “Interlude” recounts a number of important interactions between mathematics and complexity.
Some of the instances involve such areas as Number Theory (in the guise of primality testing, culminat-
ing in the AKS algorithm), Group Theory (considerations which led, among other things, to interactive
proof systems), Statistical Physics (illustrating the intriguing connection between such physical quantities
such as the partition function on the one hand, and the complexity of counting problems on the other), and
Invariant Theory (a prominent example being geometric complexity theory). Many such interactions make
appearances elsewhere in the book, but these concrete cases dramatize forcefully how important the two
fields are to each other.

The latter part of the book mainly focusses on resources other than time. The first of those chapters
(14) is a brief introduction to space complexity. Here we encounter the fundamental complexity classes L,
BPL, andNL (deterministic, probabilistic, and nondeterministic logspace, respectively). Key results, such
as Savitch’s Theorem and Immerman/Szelepcsényi’s NL = coNL among others, sketch the contrasts and
challenges in space vs. time complexity. Speaking of sketches, there is also a quick summary of streaming
algorithms, which use very little space for massive (possibly infinite) amounts of streaming data. Inevitably,
one must move on to constant space, which is treated in the final section, and includes an account (with
some proof outlines) of how seminal results on finite automata led to the remarkable theorem of Barrington
on the completely unexpected power of width 5 branching programs.

The remaining chapters cover a remarkably diverse set of topics. Communication complexity is the
subject of Chapter 15. The emphasis here is on its applications, which include such diverse fields as VLSI,
pseudo-randomness, the limits of linear programming, and formula lower bounds. The notion also intro-
duced an interactive element to information theory, with corresponding developments in coding theory.
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Prediction is very difficult, especially about the future. So said Niels Bohr4. But surprisingly, as we
learn in Chapter 16 on on-line algorithms, it’s not as useful as we may think actually to know the future:
The past can give us algorithms so competitive that it’s essentially not worth it. Learning (in a certain sense)
from the past forms a nice segue to computational learning theory (Chapter 17). This includes accounts
of generalities such as the classification problem (illustrated through the classification of hyperplanes via
perceptrons and linear programming), as well as detailed discussions, with definitions and further exam-
ples, of inductive inference and PAC-learning. Cryptography (Chapter 18) is probably the killer app of
computational complexity. It also brings together many ideas, entailing such connections as that between
computation and information theory, probabilistic computation (semantic security), interactive proofs (e.g.,
zero knowledge), and the complexity of particular problems (especially factoring). The chapter explores
many aspects of the field, including the various definitions and their motivations, and recent advances such
as homomorphic encryption. The chapter ends on a sobering question regarding the complexity of factoring
and its ramifications. Chapter 19 is about distributed and (mostly) asynchronous computing, covering some
of the classical problems such as the dining philosophers and consensus. It includes fairly detailed outlines
of the proofs of a few impossibility results for deterministic algorithms, some of which incorporate novel
connections with algebraic topology. But the striking power of randomization is again illustrated by several
algorithms that evade those impossibilities through probabilistic computation.

Finally, we come to Chapter 20, the “Epilogue.” It is one of the most interesting chapters in the book, by
far the longest, and, like any good epilogue, ties numerous plot threads together. The theme of this chapter
is the enormous depth and reach of the Theory of Computing (ToC). How it collaborates and interacts with
other fields is prominently discussed, as are ToC methodologies and the “computational complexity lens
on the science.” The latter helps to resolve problems in such fields as molecular biology, evolution, neu-
roscience, and quantum physics. That last example regards one of the most exotic and intriguing of such
foci, namely the use of computational complexity to understand the firewall paradox of black holes (as I
understand it, as manifested in what is known as the “ER=EPR” hypothesis of Maldecena and Susskind5).
There are also fascinating discussions of the philosophical, technological, and pedagogical implications, as
well as some well-taken constructive criticism for the ToC community.

3 Opinion

Far too many mathematical papers and texts fall short on explanations (I’m tempted to say6 that the non-
readability property in the universe of such papers is pseudo-random, or even that too many zero-knowledge
proofs make their way into the literature). While one does see some attention paid to such issues, we7 are
left wanting more: Why do we define things a certain way? Why is this theorem interesting? How might
one come up with this proof? What is the intuition behind it? How did people come to study these concepts,
where do they come from, and where are they going?

This book fills in this gap for an enormous swath of ToC, largely but not exclusively as regards com-
putational complexity, and how it interacts with mathematics. At the same time, it gives a panoramic view
of the field. It is a very hi-def panorama. Wigderson includes numerous careful definitions (with lucid
explanations and backgrounds in all cases), and many intuitive and cogent summaries of important proofs.
While the definitions often approach rigorous ones, the style throughout is informal, engaging, and always
infused with enthusiasm and a gentle sense of humor. The text is adorned with numerous enlightening, often

4The quote is often attributed to the likes of Yogi Berra, Samuel Goldwyn, and others.
5Google it!
6using definitions from this book
7(Well, some of us at any rate.)
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entertaining, footnotes8, sometimes with the profusion of the ones in this review, but much more informa-
tive. There are frequent “exercises” integrated into the text, in the form of invitations to the reader to try
proving something before an answer is given (if indeed it is). Of extra special value are the very extensive
references, an invaluable resource for anyone who wants reliable pointers to the literature.

It’s hard to criticize a book that I enjoyed reading as much as this one. But here goes: I would have liked
to have an index. This quibble is really a moot point, however. By prior arrangement with the publisher
there is a free on-line (fully searchable) pdf version at https://www.math.ias.edu/avi/book.

While the text is ever mindful of the proliferation of applications of ToC, it is firm in the conviction
that the field is an intellectual pursuit that is driven above all by curiosity. Reminiscent of the saying that
“computer science is no more about computers than astronomy is about telescopes” (commonly, though in
all likelihood apocryphally, attributed to Dijkstra), Wigderson asserts,

“[The] intrinsic study of computation transcends human-made artifacts, and underlies natural
and artificial processes of all types.”

I have long held this viewpoint, often to the bafflement of my (highly application-oriented) students.
Who will benefit by reading this book? I would guess just about anyone with an undergraduate education

in the sciences, or with a sufficiently quantitative background. The arguments are described conceptually
rather than mathematically, but with sufficient precision that some knowledge at that level is necessary to
appreciate most of the book (although a significant part of it doesn’t even require that). The audiences likely
to benefit most include researchers in other disciplines who wish to learn more about the field; graduate
students and researchers in adjacent scientific fields who would like to do research in ToC, and want to learn
more what it’s about; and lastly, researchers in ToC! With regard to that last audience, I am in some respects
reminded of Aaronson’s “Quantum Computing Since Democritus”9. Here the style is decidedly different
(as anyone who knows these two authors would easily guess), and the scope is considerably broader. But it
serves as an excellent and inspirational guide to the field not only for outsiders but also for those of us who
are already involved. I will keep this book well within reach whenever I find myself in unfamiliar parts of
the literature.

“Mathematics and Computation” is a truly outstanding book. One could hardly find a more expert and
capable field guide than Avi Wigderson. If you want to get a good idea of what happens in almost any
subfield of ToC, start here!

8(which, like this one, can be safely ignored)
9Reviewed by yours truly on these pages in SIGACT News 44(4) (2013), pp. 42-47.
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Communication Complexity and Applications
by Anup Rao and Amir Yehudayoff
Cambridge University Press, 2020

266 pages, Hardcover, $53, ISBN 1108497985

Review by
Michaël Cadilhac (michael@cadilhac.name)

School of Computing
DePaul University

1 Overview

At its core, communication complexity is the study of the amount of information two parties need to ex-
change in order to compute a function. For instance, Alice receives a string of characters, Bob receives
another, and they should decide whether these strings are the same with as few rounds of communication as
possible. Multiple settings are conceivable, for instance with multiple parties or with randomness. Upper
and lower bounds for communication problems rely on a wealth of mathematical tools, from probability
theory to Ramsey theory, making this a complete and exciting topic. Further, communication complexity
finds applications in different aspects of theoretical computer science, including circuit complexity and data
structures. This usually requires to take a “communication” view of a problem, which in itself can be an
eye-opening vantage point.

This book focuses on classical and more recent results in communication complexity and provides ap-
plications in theoretical computer science. It does so in a very efficient, engaging, and at times entertaining
way. I first present the contents of the book before giving my opinion on it.

2 Contents

The book is neatly divided in two main parts, one focusing on communication complexity, the other on
applications.

2.1 Part I: Communication Complexity

Chapter 1 starts by exploring deterministic two-party protocols. The fundamental notion of rectangle is
introduced and used to examine protocol trees. The first lower bounds are deduced from these concepts.
The chapter is concluded with a discussion on direct sums, i.e., solving several copies of a problem.

From the outset, the bold stylistic choices of the authors are in full play, with lots of pictures, examples,
comments, and an engaging tone.

Chapter 2 introduces the no less fundamental notion of rank of the matrix associated with a communica-
tion problem (that is, the matrix M for which Mxy is the boolean output of the protocol when Alice receives
x and Bob y). Starting with the fact that the communication complexity of a problem is between the loga-
rithm of the rank and the rank, a wealth of lower and upper bounds are presented. The log-rank conjecture

10 c©2021, Michaël Cadilhac
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is then introduced: the communication complexity is upper bounded by a power of the log of the rank. A
weaker upper bound is proved (O(

√
rank log2 rank)).

Chapter 3 focuses on randomized communication complexity, devising protocols for some problems.
Yao’s minimax principle is proved: worst-case randomized complexity is related to average-case.

Chapter 4 adds more players in the arena by considering multi-party protocols using the numbers on
foreheads model. This means that each player knows the input of all players but themselves. After providing
some protocols, lower bounds are studied, relying on Ramsey theory.

Chapter 5 studies discrepancy, a measure of randomness. The precise definition quantifies how random
is a function over a set (given a distribution). The use case here is to look at how random a communication
problem looks on well-structured sets, for instance rectangles: if the discrepancy is at most γ, then the com-
munication complexity is at least log(1/γ). This is used to derive lower bounds for randomized protocols
and multi-party protocols. A significant portion of the chapter is dedicated to using discrepancy to show a
lower bound on disjointness in the multi-party deterministic setting, a recent result.

Chapter 6 looks at information and entropy, a measure of information content. Entropy is essentially the
measure of how many bits are needed to encode an object. After a detour through combinatorial applications
of entropy and the creation of an arsenal of mathematical tools, lower bounds take the stage again. This
culminates in the proof that computing disjointness with error 1/2 − ε in the randomized setting requires
Ω(ε2n) communication.

Chapter 7 develops an interactive view of entropy: what is the amount of actual information transmitted
between two parties? In other words, what did the parties learn? This leads to several definitions and the
notion of compression of a protocol, i.e., a new protocol of smaller length that simulates the original protocol.
These are fairly recent results that culminate in the Direct Sum Theorem: The randomized complexity of
k copies of a protocol with complexity c is at least Ω(c

√
k/ log c). The chapter is concluded with a short

literature review of the past 10 years on this topic.

Chapter 8 focuses on lifting, a technique borrowed from lower bounds in monotone circuit complexity.
Here, the technique is used to derive lower bounds in communication complexity from lower bounds in
decision tree complexity, a simple, restricted model of computation. This is used in particular to show that
the log-rank conjecture cannot hold with an exponent less than 2.

2.2 Part II: Applications

Chapter 9 deals first with circuit complexity. Karchmer-Widgerson games are introduced: these are
communication problems defined by a boolean function. The game for f : {0, 1}n → {0, 1} is for Alice to
receive an entry mapped to 0, Bob an entry mapped to 1, and for them to find a position where their entries
differ. If this game can be solved with d bits of communication, then there is a circuit of depth d computing
f . This is used to derive lower bounds. The chapter then turns to proof systems, first with the complexity
of proving the Pigeonhole Principle with resolution refutations, then the complexity of vertex cover using
cutting planes refutations.
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Chapter 10 studies memory complexity, through branching programs, a sort of binary decision diagram
where each layer queries the same variable. A restriction thereof, streaming algorithms, further requires the
data to be read once, and in sequence. Using communication complexity, some lower bounds are derived
for streaming algorithms first, then for general branching programs.

Chapter 11 deals with data structures, focusing on both time and space complexity. After presenting
some classical data structures, lower bounds are devised, again by bridging the existence of some efficient
data structures with that of efficient communication protocols. The lower bounds are in the form of trade-
offs, e.g., the product of query time and space usage is at least a certain value. This is done in the case of
static data structures as well as dynamic ones, which can be updated. The chapter is concluded with lower
bounds on data structures for graph problems.

Chapter 12 looks at polytopes and how they can encode computational problems. In this representation,
the number of facets of the polytope is tightly related to the complexity of solving the problem. This leads
to the definition of the extension complexity of a polygon: this is the least number of facets of any extension
of the polygon. (Extension here means that there is a linear map from the extension to the original polygon.)
After covering examples of polygons that have a low extension complexity, upper and lower bounds on that
value are derived, in particular using the tools of Chapter 6. Applications in circuit complexity are presented.

Chapter 13 introduces distributed computing. Therein, a network is defined as an undirected graph and
each vertex represents one of the parties. Their goal is to compute something together with no prior knowl-
edge of the underlying graph. An example is given, in which parties color the underlying graph with few
colors, then lower bounds are proved. This is done by grouping vertices together so that the overall protocol
looks like a two-party protocol.

3 Opinion

We all (hopefully) had a teacher who was too excited about the material for their own good. Tangents,
digressions, tidbits, they can be hard to follow even though they are engaging and share their enthusiasm.
Now imagine that this teacher had to encapsulate that energy into a book: although this would provide
structure, it would be limiting and contrived, and this would be done at a loss. The authors of this textbook
beautifully solved that conundrum with extensive use of margin notes, some providing aha-moments, while
other notes give more context and doorways to more advanced topics. These margin notes are an essential
feature of this book and are done with care, taste, and gusto, showcasing a mastery not only of the topics,
but also of drawing software. One criticism is that it sometimes happens that these side notes aren’t optional
reading, although they look like it, and this can be slightly confusing.

The choice of topics makes for an appealing selection and a complete cocktail, with a clear direction. The
more advanced topics are very well presented and require little prior understanding of theoretical computer
science. The tone is somewhat conversational, making the book very appropriate for self-study.

This conversational style however impacts structure, not the least due to the choice of the authors to
leave the numbers out of section titles. For instance, subsections have the same typography as sections but
for the use of italic. A more confusing example is the “Proof Systems” section, which is only one 6-line-long
paragraph, while it probably was meant as an encapsulating section for the remainder of the chapter. This,
again, makes the book slightly more appropriate to read cover to cover rather than to use as a reference.
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In conclusion, this is a great book, both in terms of contents and style. I believe that its streamlined
and welcoming presentation makes it relevant to advanced undergrads and graduate students alike, while
the more advanced topics will also be of interest to researchers with prior knowledge in communication
complexity.
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