Relativized Separation of EQP from PNP

Frederic Green* Randall Pruim?

Abstract

An oracle is constructed relative to which quantum polynomial time
(EQP) is not polynomial-time Turing reducible to NP. That is, there

is an A such that EQP4 Z PNP* This generalizes and simplifies pre-
vious separations of EQP from NP and ZPP, due to Berthiaume and
Brassard. A key element of the proof is the use of a special property
of Grover’s algorithm for database search, in order to show that the
test language is in EQP*.

Keywords: Computational Complexity, Theory of Computation, Quantum
Computation.

1 Introduction

One of the primary goals of quantum computational complexity theory is
to compare quantum complexity classes with classical complexity classes.
A quantum class of central interest is EQP (“Exact Quantum Polynomial”
time [3]), the quantum analog of P. The classical complexity of EQP was
already an object of study prior to Shor’s seminal result that factoring can
be done in probabalistic quantum polynomial time [7], and Grover’s O(\/ﬁ)
quantum algorithm [6] for searching an unsorted database of N elements.
However, to date there is no evidence that EQP and P are different (proving
they are different would imply P # PSPACE), nor are there any interesting,
natural problems known to be in EQP that are not known to be in P. Many
researchers continue to wonder whether EQP is in the polynomial hierar-
chy. In light of the discovery [5] that NQP, the quantum analog of NP, is

*Department of Mathematics and Computer Science, Clark University, Worcester, MA
01610, fgreen@black.clarku.edu

"Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546,
rpruim@calvin.edu

the same as coC_P, it is also reasonable to ask whether there is a natural
characterization of EQP in terms of a classical complexity class.

Oracle separations can help this latter investigation, because they rule
out certain relativizable relationships between EQP and other classes. For
example, Berthiaume and Brassard [3] showed that there is an oracle relative
to which EQP € NPUcoNP. This rules out the possibility that (for example)
NP or ZPP contain EQP via a proof that relativizes.

In this note, we give a simple construction of an oracle relative to which
EQP is not in PNP. This subsumes the result of [3] mentioned above. The
novel element in the proof is not the diagonalization (which is similar to
Stockmeyer’s construction [8] of an oracle relative to which BPP is not in
PNP). but rather showing that the diagonalizing set is in EQP. The key is
to exploit a property of Grover’s algorithm, pointed out by Boyer, Brassard,
Hgyer and Tapp [4]. In searching for a key that occurs in exactly 1/4 of the
elements of a database, Grover’s algorithm has success probability 1 after a
single iteration.

2 Preliminaries

We assume familiarity with the basics of classical computational (e.g., [1])
complexity as well as quantum computation (e.g., [2]).

We consider a set to be a subset of ¥* where ¥ = {0,1}. If A C ¥*,
then A(z) denotes the characteristic function of A (i.e., A(z) =1if z € A
and otherwise A(z) = 0).

A qubit is a quantum mechanical state which is a linear superposition
of the states |0) and |1). An n-bit quantum register is a superposition of
tensor product states of the form |z1) ® |22) - - - ®|z,) where each z; € ¥. If
|W¥1) and |¥3) are quantum states, we write |¥)|W2) for the tensor product
|W1) ® |[¥s). For notational convenience, we also write |z1, ..., z,) or |x) (so
that x denotes the list of bits z1,...,z,) in place of |z1) @ |z3) - - - ®|z4).

We take the quantum Turing machine as a model of quantum computa-
tion. The oracle access mechanism for quantum machines uses two quantum
registers (one to hold the query string = and one to hold a qubit b where
the query answer is recorded) and works as follows. Let A be a set, let |z)
the contents of the quantum query register, and let |b) be the contents of
the query answer register. When we want to query A, in one step, the state
jumps from |z)|b) to |z)|b & A(z)).

We recall some unitary transformations used by Grover in his algo-

rithm [6]. The transformation W has the following effect on a single qubit:

1A
W) = —= 3 (=1)%]a).
) 7 az:%()*la)
It has the effect of a Walsh-Hadamard transform on an n-qubit register:

1 .
Wiar, v = 5o 20 (S0 |y, sy,
yer®

where x -y is the inner product >/, z;y;.

When an oracle set A is present in a quantum computation, the tran-
formation) on a state of the form |z) ® |b) performs a query as described
above. The most important use of this transformation below is with the
query answer register in superposition, in states of the form |z) ® (|0) —[1)).
This has the effect of reversing the sign of the state if the answer is “yes,”
which is similar to the transformation denoted I’ in Grover’s paper. Finally,
the transformation ' on a quantum register of n bits flips the sign of any
state except the one containing n 0’s.

3 The Oracle
Let
L(A) = {0"|the number of strings in A of length n is $2"} .

Consider oracles A such that for any n, there are either i?” or %2” strings
of length n in A. We call such an oracle symmetric. The proof of our main
result follows from two lemmas. The first Lemma says that a symmetric A
can be constructed such that L(A) ¢ PNP® The second shows that for any
symmetric A, L(A) € EQP4.

Lemma 3.1 There is a symmetric oracle A such that L(A) ¢ pNPY,

Proof: Let {Ny, Ny, N3, ...} be an enumeration of NP oracle machines. De-
fine the canonical NP4-complete language,

K(A) = {(z,k,0"|NPA-machine N/! accepts z in ¢ time steps} .
Since any langauge in PNP* ig accepted by polynomial time machine us-
ing oracle K(A), an enumeration {My, My, M3, ...} of all polynomial time

oracle machines provides us with an implicit enumeration of all PNP Jan-
guages.

The construction of A is in stages. At stage 7, we pick an n; and put a
set of strings of length n; in A such that 0™ € L(A) iff M# rejects 0™:.

Stage ¢+ works roughly as follows. Choose n; to be larger than the length
of any query made in previous stages Run M; on input 0™ up to its first
query to K(A). Suppose the first query is (y, k,0%). If there is any way to
add strings of length n; to A in order that N{‘ accepts y in time £, then
do so. Since N only requires one accepting path in order to accept, this
fixes a polynomial number of elements in A=". If there is no way to make
Nj, accept, then it is fixed to reject no matter what we do with the oracle.
The first query in M;’s computation is now “frozen.” Do the same with all
subsequent queries in M;’s computation: freeze the answer to the query if
possible, keeping all previous queries frozen. This can be done for all the
queries that M; makes by fixing at most polynomially many strings of length
n; to be in A. Suppose ¢ such elements have been fixed. After all queries
are frozen, determine if M; rejects. If it does, put iQ”i — ¢ of the remaining
strings of length n; in A;. If, on the other hand, M; accepts, put %2”" —q
strings of length n; in A;.

It is clear that A is symmetric and that L(A) ¢ PNP, O

Lemma 3.2 For any symmetric A, L(A) € EQPA.

Proof:

The main idea is that the language L(A) can be decided in EQP# for
any symmetric A by applying one iteration of Grover’s algorithm.

We describe an EQP“-machine M# that recognizes L(A). M has one
register to hold the input x, one query register and one query answer register.
In the beginning the state looks like |Wg) = |z)|0)|1), where the 0 denotes
n zeroes (where n = |z|). M works as follows. First, it checks to see if z is
of the form 0”. If not, it rejects (with probability 1, of course). Otherwise,
we evolve the state according to one iteration of Grover’s algorithm, that is,
applying the transformation WEWQW to the state |z)|0)|1).

We first take |Wo) and apply W to the query and query answer registers
(which start out as all zeroes and a one, respectively). We get,

W) = s 20 [9)12)(10) — 1)

z€{0,1}"

Now apply the transformation @ (i.e., make a query to A), and apply
W again. Writing out these two steps, we obtain,

|%>~>2(niw S DAl (0) - 1)

2€{0,1}n

Qnm > 2 (=1)**[2)[y)(|0) = 1))

y€{0,1}" ze{0,1}"

Now apply F to the query register. This flips the sign of all states except
the one with y = 0”. For ease in notation, suppress the input and the query
answer bit for now (that is, the |z) and (|0) — |1)), which at this point are
unaffected by the computation anyway). Then applying F we obtain,

1 z zZ -z
Vo) = Sy 2o | (EDAP10) = (1A o) |y>]
z€{0,1}" | y#0
1 -z
= w2 (DA ()R - (O Y (- |y>]
ze{0,1}" | ye{0,1}7
= iz 2 (-1)*@o) - sy DD (=" 37 (=)*7y)
ze{0,1}» ze{0,1}" ye{0,1}n

The final step in the Grover iteration is to apply W again, to the query
register. Also apply W to the query answer register, since in the end we
will want to make one final query that is not in superposition. Restoring
the input and query answer registers, the result is,

7 SIS SR - g Sl

Finally, make one more query to A. Since the query answer register
contains a 1, we get a negation of A(z) or A(y):

3 S5 DA - 5 D)

Call the state that results above |¥). Now suppose that 1/4 of the strings
of length n are in A. Then Y, (=1)4(*) = 27/2. In this case,

W) =5 (ZI)A) + 3 1alnlo) - 3 |x>|y>|1>)
yEA ygA
yeA
By similar reasoning, if 3/4 of the strings of length n are in A, then
W) =~ 3 D),
ygA

Consider the observable,

2n/2 Z
Yy

It is easy to see that (® | ¥) = 1 if the number of y’s in A is %2”, and is
0 if the number of y’s in A is %2”. This concludes the proof of the lemma.
O

Combining Lemmas 3.2 and 3.1, we obtain,

Theorem 3.3 There is an oracle A such that EQP? ¢ pNPY

4 Discussion and Open Problems

We still do not understand the class EQP very well. The best known up-
per bound for it, due to Fortnow and Rogers, is that it is contained in
LWPP. This implies that it is low for PP, which suggests that it has a
low complexity, but its relationship to the polynomial-time hierarchy is very
unclear. As pointed out by Berthiaume and Brassard [3], EQP contains
the class of languages recognized by nondeterministic Turing machines in
which the number of accepting paths is either 0 or 1/2 of all paths; this
constitutes the best lower bound known to these authors. To get a better
idea of where EQP might lie, it would be nice to establish either that it is
in the polynomial-time hierarchy, or that it is not, relative to some oracle.
The results of this paper mildly suggest that the latter might be the case,
although it should be emphasized that the language that separates EQP#

from PNP* also separates BPP4 from pNPY Separating EQP from the PH

will

probably require a much more complex test language, and therefore a

more sophisticated algorithm for determining membership. Further devel-
opments in quantum search algorithms such as that of Grover may offer
hints as to how to proceed.

References

(1]

J. L. Balcazar, J. Diaz, and J. Gabarré. Structural Complezity I, volume
11 of FATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1988.

A. Berthiaume. Quantum computation. In L. Hemaspaandra and
A. L. Selman, editors, Complexity Theory Retrospective II, chapter 2,
pages 23-50. Springer-Verlag, 1997.

A. Berthiaume and G. Brassard. Oracle quantum computing. In Journal
of Modern Optics, 41(12) (1994), pages 2521-2535.

M. Boyer, G. Brassar, P. Hgyer, and A. Tapp. Tight bounds on quantum
searching. In Proceedings of the jth Workshop on Physics and Compu-
tation, (1996), pages 36—43. To appear in Fortschritte der Physik. Also
see Los Alamos Preprint quant-ph/9605034.

S. Fenner, I'. Green, S. Homer and R. Pruim. Determining acceptance
pssibility for a quantum computation is hard for the polynomial hier-
archy. In Proceedings of the Royal Society A 455, (1999) pages 3953 -
3966.

L. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the 28th Annual Symposium on Theory of Computing,
ACM, 1996, pages 212-219.

P. W. Shor. Polynomial-time algorithms for prime number factoriza-

tion and discrete logarithms on a quantum computer. STAM J. Comp.,
26:1484-1509, 1997.

L. Stockmeyer. On approximation algorithms for #P. In STAM J. Com-
puting 14 (1985), pages 849-861.

