Name:
Circle your instres

Joyce Pendharkar Taylor Winders

Math 120 Calculus I
Final Exam

December 2016
This is a closed-book, closed-notes test. Calculators are not allowed. Please turn off your cellphone and any other electronic equipment during the test.

Leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1+\ln 10}}$ if you like. Show all your work for credit. Be sure that your proofs and computations are easy to read. Points for each problem are in square brackets.

1. [22] Consider the function $f(x)=\frac{x}{1+x^{2}}$. Its derivative is $f^{\prime}(x)=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$, and its second derivative is $f^{\prime \prime}(x)=\frac{4 x^{3}-6 x}{\left(1+x^{2}\right)^{3}}$.
a. [3] What are the x-intercepts and y-intercepts of f ?
b. [3] What are the critical points for f ?
c. [3] What are the inflection points for f ?
d. [4] Are there any vertical asymptotes? Are there any horizontal asymptotes
e. [6] Sketch the graph of f. Show intercepts, critical points, inflection points, and asymptotes.
2. [12; 6 points each part] On limits. Evaluate each of the following limits in parts a and b if it exists, but if it doesn't then explain why.
a. $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{5 x^{2}}$
b. $\lim _{x \rightarrow \infty} \sqrt{\frac{4 x^{3}-2 x}{9 x^{3}+1}}$
c. Suppose that $f^{\prime}(x)=\sqrt{x^{2}+1}$. Use that information to evaluate
$\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
3. [24; 6 points each part] Differentiation. Do not simplify your answers. Use parentheses properly.
a. For $f(x)=x \ln x$, find $f^{\prime}(x)$.
b. Evaluate $\frac{d}{d x} \tan ^{3}(2 x-\pi)$.
c. Let $f(t)=\frac{e^{t}+t^{2 / 3}}{1+\tan t}$. Find $f^{\prime}(t)$.
d. Let $F(x)=\int_{4}^{x} \frac{t^{t}+\ln \left(t^{2}+1\right)}{1+\sqrt{t}} d t$. Find $F^{\prime}(x)$. (Hint: do not try to evaluate the integral.)
4. [10] Determine the function $f(x)$ whose derivative is $f^{\prime}(x)=6 x^{2}-4 x+2$ and whose value at $x=1$ is $f(1)=9$.
5. [10] A cylindrical aluminum can is to be constructed to have a volume of 1000 cubic cm . Let h denote the height of the can and r the radius of the base. Recall that the volume of a cylinder with height h and radius r of the base is $V=\pi r^{2} h$, and the total surface area is $A=2 \pi r^{2}+2 \pi r h$. Determine the dimensions of the cylinder to minimize the surface area A of the can. Your final answer should indicate the values of r and h.
6. [12; 6 points each part] Evaluate the following integrals. Note that the first one is an indefinite integral and the second one is a definite integral.
a. $\int\left(5 e^{x}+3 \cos x\right) d x$
b. $\int_{1}^{4}\left(x^{2}+\frac{1}{2 \sqrt{x}}\right) d x$
7. [10] The graph of a function $f(x)$ is drawn below. Its graph consists of three line segments.

Determine the value of the integral $\int_{-1}^{4} f(x) d x$.

$\# 1 .[22]$	
$\# 2 .[12]$	
$\# 3 .[24]$	
$\# 4 .[10]$	
$\# 5 .[10]$	
$\# 6 .[12]$	
$\# 6 .[10]$	
Total	

