Math 120 Calculus I
Final Answers
December 2016

Scale. [to be determined]

1. [22] Consider the function \(f(x) = \frac{x}{1 + x^2} \). Its derivative is \(f'(x) = \frac{1 - x^2}{(1 + x^2)^2} \), and its second derivative is \(f''(x) = \frac{4x^3 - 6x}{(1 + x^2)^3} \).

a. [3] What are the \(x \)-intercepts and \(y \)-intercepts of \(f \)?

The only \(x \)-intercept is the origin and the \(y \)-intercept is also the origin. In other words, the graph of \(f \) only crosses either axis at the origin.

b. [3] What are the critical points for \(f \)?

The numerator \(1 - x^2 \) of the derivative \(f' \) is 0 when \(x = \pm 1 \).

c. [3] What are the inflection points for \(f \)?

The numerator \(4x^3 - 6x \) of the second derivative \(f'' \) is 0 when \(x = 0, \pm \sqrt{3}/2 \).

d. [4] Are there any vertical asymptotes? Are there any horizontal asymptotes?

There are no vertical asymptotes, but the \(x \)-axis is a horizontal asymptote since \(\lim_{x \to \pm\infty} f(x) = 0 \).

e. [6] Sketch the graph of \(f \). Show intercepts, critical points, inflection points, and asymptotes.

The curve looks like this, but it should be also annotated with the points mentioned above.

\[\begin{align*}
 f(x) &= \frac{x}{1 + x^2} \\
 f'(x) &= \frac{1 - x^2}{(1 + x^2)^2} \\
 f''(x) &= \frac{4x^3 - 6x}{(1 + x^2)^3}
\end{align*} \]

2. [15; 5 points each part] On limits. Evaluate each of the following limits in parts a and b if it exists, but if it doesn’t then explain why.

a. \(\lim_{x \to 0} \frac{\sin^2 3x}{5x^2} \)

One way to evaluate this limit is to rewrite it as

\[\lim_{x \to 0} \frac{\sin 3x \sin 3x}{5x^2} = \frac{9}{5} \]

which equals \(\frac{9}{5} \) since \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \).

You could also use L’Hôpital’s rule since this limit is of the indeterminant form 0/0. Then the limit is equal to

\[\lim_{x \to 0} \frac{6 \sin 3x \cos 3x}{10x} \]

It’s still of the form 0/0, and another application of L’Hôpital’s rule gives

\[\lim_{x \to 0} \frac{6(3 \cos^2 3x - 3 \sin^2 3x)}{10} \]

which equals 1.8.

b. \(\lim_{x \to \infty} \sqrt{\frac{4x^3 - 2x}{9x^3 + 1}} \)

Since square roots are continuous, the value of this limit is the square root of the limit

\[\lim_{x \to \infty} \frac{4x^3 - 2x}{9x^3 + 1} \]

which is \(\frac{4}{9} \). You can show that by various methods including the theorem that the limit as \(x \to \infty \) of a rational function whose numerator and denominator have the same degree is the quotient of the leading coefficients. Therefore, the answer is \(\sqrt{\frac{4}{9}} = \frac{2}{3} \).

c. Suppose that \(f'(x) = \sqrt{x^2 + 1} \). Use that information to evaluate

\[\lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} \]

The limit is the definition of the derivative of \(f'(2) \), and that equals \(\sqrt{5} \).

3. [24; 6 points each part] Differentiation. Do not simplify your answers. Use parentheses properly.

a. For \(f(x) = x \ln x \), find \(f'(x) \).

Use the product rule.

\[f'(x) = \ln x + x(1/x) = \ln x + 1. \]
b. Evaluate \(\frac{d}{dx} \tan^3(2x - \pi) \).

Use the chain rule twice. You’ll get

\[
3 \tan^2(2x - \pi) \sec^2(2x - \pi) 2.
\]

c. Let \(f(t) = \frac{e^t + t^2/3}{1 + \tan t} \). Find \(f'(t) \).

Use the quotient rule. You’ll find \(f'(t) \) equals

\[
\frac{(e^t + \frac{2}{3}t^{-1/3})(1 + \tan t) - (e^t + t^2/3) \sec^2 t}{(1 + \tan t)^2}.
\]

d. Let \(F(x) = \int_4^x t^4 + \ln(t^2 + 1) \, dt \). Find \(F'(x) \). (Hint: do not try to evaluate the integral.)

Use the version of the Fundamental Theorem of Calculus that tells you the derivative of the integral is the original function. Then

\[
F'(x) = \frac{x^5 + \ln(x^2 + 1)}{1 + \sqrt{x}}.
\]

4. [10] Determine the function \(f(x) \) whose derivative is \(f'(x) = 6x^2 - 4x + 2 \) and whose value at \(x = 1 \) is \(f(1) = 9 \).

Antidifferentiate \(f'(x) = 6x^2 - 4x + 2 \) to determine that \(f(x) = 2x^3 - 2x^2 + 2x + C \) for some value of \(C \). Since \(f(1) = 9 \), therefore \(9 = 2 - 2 + 2 + C \), so \(C = 7 \). Therefore, \(f(x) = 2x^3 - 2x^2 + 2x + 7 \).

5. [10] A cylindrical aluminum can is to be constructed to have a volume of 1000 cubic cm. Let \(h \) denote the height of the can and \(r \) the radius of the base. Recall that the volume of a cylinder with height \(h \) and radius \(r \) of the base is \(V = \pi r^2 h \), and the total surface area is \(A = 2\pi r^2 + 2\pi rh \).

Determine the dimensions of the cylinder to minimize the surface area \(A \) of the can. Your final answer should indicate the values of \(r \) and \(h \).

Start with the equations

\[
1000 = V = \pi r^2 h, \quad A = 2\pi r^2 + 2\pi rh.
\]

Use the first to eliminate \(h \). \(h = \frac{1000}{\pi r^2} \), so the second equation becomes

\[
A = 2\pi r^2 + \frac{2000}{r}.
\]

Compute the derivative of \(A \) with respect to \(r \).

\[
\frac{dA}{dr} = 4\pi r - \frac{2000}{r^2}.
\]

Find the critical points by setting that derivative to 0 and solving the resulting equation for \(r \). That gives you

\[
r = \sqrt[3]{\frac{500}{\pi}}
\]

(which is about 5.42). That will minimize the surface area.

The value for \(h \) corresponding to that \(r \) is \(h = \frac{10000}{\pi(500/\pi)^{2/3}} \).

If you wanted to, you could use a little algebra shows you that \(h = 2r \), that is, the best shaped cylinder has the same height and diameter.

6. [12; 6 points each part] Evaluate the following integrals.

Note that the first one is an indefinite integral and the second one is a definite integral.

a. \(\int (5e^x + 3\cos x) \, dx \)

The general form of the antiderivative of the integrand is \(5e^x + 3\sin x + C \).

b. \(\int_1^4 \left(x^2 + \frac{1}{2\sqrt{x}} \right) \, dx \)

An antiderivative is \(\frac{1}{3} x^3 + \sqrt{x} \), so the value of the definite integral is

\[
\left(\frac{1}{3} x^3 + \sqrt{x} \right)_{1}^{4} - \left(\frac{1}{3} x^3 + \sqrt{x} \right)_{1}^{3}.
\]

(which simplifies to 22).

7. [10] The graph of a function \(f(x) \) is drawn below. Its graph consists of three line segments.

Determine the value of the integral \(\int_{-1}^{4} f(x) \, dx \).

The region under the curve from \(-1\) to \(1\) is a triangle of area 2. The region under the curve from \(1\) to \(2\) is a rectangle of area 2. The region under the curve from \(2\) to \(\frac{10}{3}\) is \(\frac{1}{3}\), and the region above the curve from \(\frac{10}{3}\) to 4 is \(\frac{1}{3}\). So the value of the integral is \(2 + 2 + \frac{1}{3} - \frac{1}{3} = 5\).