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We’ve looked at the basic rules of integration and
the Fundamental Theorem of Calculus (FTC). Un-
like differentiation, there are no product, quotient,
and chain rules for integration. But, the product
rule and chain rule for differentiation do give us
the two most important techniques of integration,
namely the techniques called wntegration by parts
and substitution. We’ll first look at substitution,
and later at integration by parts.

Leibniz’ notation. One of the main reasons we
continue to use Leibniz’ notation in calculus is that
it works so well, even though we usually don’t use
the infinitesimals (infinitely small quantities) that
Leibniz used. For differentiation, we often write

d
d_y for the derivative of y with respect to x because

x
that notation indicates the dependent variable y
and the independent variable z. But for Leibniz,

d
the derivative <2 was an actual quotient, namely,

the inﬁnitesimalg%hange dy, which he called the dif-
ferential of y, divided by the infinitesimal change
dx, the differential of x.

With that notation, the chain rule is simply

stated as
dy dy du

dr  du dx’
That’s a lot simpler expression than what we get
when we use functional notation:

(fog)(x)=f'(9(x)) g (x).

The connection is that y = f(u) and u = g(x).
Leibniz interpreted integrals as infinite sums
of infinitesimals. When he wrote something like

5
/ 22 dz, he meant to sum all the quantities 22 dz
3

for x taking values from 3 to 5, where dx was the
differential for that value of z, that is, an infinitely
small change in z. We continue to use Leibniz’ no-
tation for integrals because it works so well for the
technique of substitution.

Example 1. Let’s start with an example of an in-
definite integral so we don’t have to worry about the
limits of integration. Since the chain rule is about
composition of functions, our example should in-
volve composition. Consider the integral

/:L‘ cos(3z% + 5) dx.

This is one you can figure out by inspection that
the answer is going to be gsin(32® + 5) + C, but
let’s pretend that we didn’t notice that.

We do notice that there is a composition of func-
tions, namely the cosine of a function, the function
u = g(z) = 3r?+5. And we know the derivative of

dx

u
Leibniz, the derivative — is a quotient, so we will

that function, namely, — = ¢'(x) = 6. Following

rewrite that last equatiogfl as du = 6xdx. In the
integral we're looking at, we have the a factor of
xdx, and that’s equal to %du. Thus, we’ll rewrite
the integral

/accos(i%x2 +5)dx = /%cosudu.

The new integral is easy to integrate, and we get
Lsinu+C. We convert back to the original variable

6
x, and we get our answer %Sin(Bx2 +5)+C.

That’s all there is to it, but it probably looks
right now more like magic than like mathematics.
It would be nice to have a rigorous proof that it
works. Here’s the theorem for definite integrals. If
you leave out the limits of integration, you’ll see
the theorem for indefinite integrals.

Theorem 2. Let y = f(u) and u = g(x) where f
is continuous and g is differentiable. Then

b (b)
d g
/ Y d_u dr = / y du.
a z g(a)
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Proof. Let I be an antiderivative of f, that is,
F'(u) = f(u) =y.

First look at the right integral. By the Funda-
mental Theorem of Calculus, it equals

Fu)| = F(g(b)) — F(g(a)).

g(a)
Next, look at the left integral. By the chain rule,

(Fog)(x) = F(g(a)) o (a) = F'(u) T2 = y 5.

du
Therefore, F' o g is an antiderivative of y T and so
x

the left integral equals

(Fog)| = Flg) ~ Flg(a)).

Thus, the two integrals are equal. Q.E.D.
Substitution in definite integrals. There are
two ways you can evaluate a definite integral like

2
/ xcos(3x% +5) dx
0

using the method of substitution.

One way is to temporarily forget the limits of
integration and treat it as an indefinite integral.
Make the substitution u = 322 + 5 as done above
to simplify the integral, do the integration in terms
of u, back substitute to get the answer in terms
of z. Then recall the limits x = 0 to z = 2, and

evaluate  sin(3z% +5) ’2 to get #sin17 — & sin 5.
The easier way is to change the limits to be in
terms of u at the same time the substitution is made
as indicated in the statement of the theorem above.
When 2 = 0, u = 3-02+5 = 5 and when z = 2,
u=3-2%45=17. Thus, the computations looks

like
17
L.

_ 1l
= 6smu‘

% cosu du

2

/ zcos(3z® +5)dr =
=0

17

5

— 1 _ 1
= 6s1r117 651115

The advantage to this method is that you don’t
have to return back to the original variable.

When do you use substitution? The usual
purpose of substitution is to simplify an integral a
bit. Look for a composition somewhere in the inte-
grand and choose the inner function to be u = g(z).
But in order for the substitution to work, the
derivative of the inner function has to also appear
as a factor of the integrand, although constant mul-
tiples can be adjusted for. In the examples above,
the integrand x cos(3z%+5) had a composition with
= 322 + 5 as the inner function, and its derivative,
6z, is a factor of the integrand, except for the con-
stant multiple 6 that can be taken care of. Here are
three more examples.

142%v/523 — 8dx, there’s a

composition where u = 5x®—8 is the inner function,
and its derivative 1522 is a factor of the integrand
except for the constant multiple 15. So that sub-
stitution will work,

/ 142523 — 8, dx, the same sub-

stitution © = 52® — 8 won’t work since there’s no
factor of 22 in the integrand.

) 6sinx

In the integral /
cos T

denominator as the inner function u = cosz, and
its derivative —sinz is a factor of the integrand
(except for the constant multiple of —1 which is
not a problem), so this substitution works. But it
wouldn’t work if there were no sinx in the numer-
ator.

In very complicated integrals, you may end up
using substitution twice, first to simplify it part-
way, second to simplify it even more. Usually when
you do two substitutions, you could have done one
grand substitution instead, but that’s not always
easy to see at first.

In the integral /

In the integral

dx, you can treat the
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